期刊文献+

改进的卡尔曼滤波预测采煤工作面瓦斯涌出量

Improved Kalman Filter for Predicting Gas Emission from Coal Face
下载PDF
导出
摘要 为了准确可靠预测工作面的瓦斯涌出量,本文以卡尔曼滤波为基础,结合人工神经网络,设计虚拟中间状态变量并得出对应预测模型。其间通过Matlab使预测模型实现目的,并用此方法对某矿采煤工作面瓦斯涌出量进行预测。结果表明,建立的预测方法具有较好的预测性能,其平均误差为3.35%,结果正确可靠。 In order to accurately and reliably predict the amount of gas emission from the working face, this paper used the Kalman filter as the basis and combined the artificial neural network to design the virtual intermediate state variables and obtain the corresponding prediction model. In the meantime, the prediction model was achieved by Matlab,and the gas emission from a coal mining face was predicted by this method. The results show that the established prediction method has better prediction performance, and the average error is 3.35%, the result is correct and reliable.
作者 唐一举 TANG Yiju(Henan College of Industry&Information Technology,Jiaozuo Henan 454000)
出处 《河南科技》 2019年第29期96-98,共3页 Henan Science and Technology
关键词 卡尔曼滤波法 径向基神经网络 瓦斯涌出量 Calman filtering method radial basis function neural network gas emission
  • 相关文献

参考文献6

二级参考文献43

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部