期刊文献+

基于偏最小二乘的土壤重金属铜含量高光谱估算 被引量:17

Hyperspectral Estimation of Heavy Metal Cu Content in Soil based on Partial Least Square Method
原文传递
导出
摘要 为探究高光谱数据估算土壤重金属铜含量的可行性,以石家庄市水源保护区褐土为研究对象,对不同光谱变换数据与重金属铜含量做了相关分析,建立了土壤重金属铜的单光谱变换指标偏最小二乘模型和多光谱变换指标偏最小二乘模型。结果表明:光谱反射率(R)经倒数一阶微分(RTFD)变换后与铜含量的相关性有所提高;光谱敏感波段为418、427、435、446、490、673、1 909、1 920和2 221 nm,基本位于土壤氧化铁、粘土矿物的特征吸收区域;对土壤重金属铜含量估算效果最好的单光谱变换指标偏最小二乘模型为RTFD模型,其模型决定系数(R2)为0.649,均方根误差(RMSE)为1.477;多光谱变换指标偏最小二乘模型R2和RMSE分别为0.751和1.162,建模效果优于单光谱变换指标模型。研究结果可为北方地区褐土类型土壤重金属铜的高光谱估算提供借鉴。 In order to explore the feasibility of estimating the heavy metal Cu content in soil by hyperspectral data,based on the study of the cinnamon soil of the water source protected area in Shijiazhuang,the correlation analysis between the different spectral data and the heavy metal copper content was made. The univariate partial least squares model of soil heavy metal Cu and a partial least squares model of multivariate were established.The results showed that the correlation between the spectral reflectance and the Cu content was improved by the Reciprocal Transformation First Derivative(RTFD). The spectral sensitivity bands were 418,427,435,446,490,673,1 909,1 920,2 221 nm,which was located in the characteristic absorption region of soil iron oxide and clay minerals. The univariate partial least squares model with the best estimation effect on soil heavy metal Cu content was RTFD model,and its model determination coefficient R2 was 0.649,Root Mean Square Error(RMSE)was 1.477. The multivariate partial least squares model R2 and RMSE were 0.751 and 1.162,and the modeling effect was better than the univariate model. The research results can provide a reference for the hyperspectral estimation of heavy metal Cu in cinnamon soil in northern China.
作者 贺军亮 崔军丽 张淑媛 李仁杰 查勇 He Junliang;Cui Junli;Zhang Shuyuan;Li Renjie;Zha Yong(College of Resources and Environment Sciences,Shijiazhuang University,Shijiazhuang 050035,China;College of Resources and Environment Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction,Hebei Normal University,Shijiazhuang 050024,China;Key Research Institute of Yellow River Civilization and Sustainable Development,Henan University,Kaifeng 475001,China;Key Laboratory of Ministry of Education for Virtual Geographic Environment,Nanjing Normal University,Nanjing 210046,China)
出处 《遥感技术与应用》 CSCD 北大核心 2019年第5期998-1004,共7页 Remote Sensing Technology and Application
基金 国家自然科学基金青年科学基金项目(41201215) 河北省自然科学基金项目(D2016106013)
关键词 高光谱 重金属铜 倒数一阶微分 多变换偏最小二乘模型 Hyperspectral Heavy metal copper Reciprocal Transformation First Derivative(RTFD) Multi-variate Partial Least Squares model
  • 相关文献

参考文献21

二级参考文献263

共引文献585

同被引文献203

引证文献17

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部