期刊文献+

基于大规模虚拟MIMO的检测算法改进 被引量:1

An Improved Signal Detection Algorithm Based on Virtual Channel Massive MIMO System
下载PDF
导出
摘要 针对传统大规模MIMO部署过多天线导致硬件成本和空间资源的浪费,选择基于虚拟信道的大规模MIMO系统,能够复用天线资源,在一根天线上传输多路数据流。针对传统的大规模MIMO信号检测方法,无法直接应用在虚拟大规模MIMO,提出了联合MMSE-ML检测算法,先检测出每根天线叠加的混合数据,再区分出单路数据,能够在保证良好检测性能下,降低检测算法的复杂度。仿真结果和复杂度分析表明,该方法在大规模MIMO中,相比传统大规模MIMO能节约天线数量保证检测性能,复杂度因天线数减少而降低。 The traditional massive Multiple Input Multiple Output(MIMO) deployment of too many antennas leads to the cost of hardware and the waste of space resources. A large-scale MIMO system based on virtual channels can be selected to reuse the antenna resources and transmit multiple data streams on one antenna. In view of the traditional large scale MIMO signal detection method, it can not be applied directly to the virtual large-scale MIMO. A joint Minimum Mean Square Error-Maximum Likelihood(MMSE-ML) detection algorithm is proposed, which first detects the mixed data of each antenna, and then divides the single path data. It can reduce the complexity of the detection algorithm under the good detection performance. The simulation results and complexity analysis show that the method can save the number of antenna detection performance compared with the traditional large scale MIMO in large scale MIMO, and the complexity is reduced because of the decrease of the number of antennas.
作者 苗荣臻 周渊平 马耀庭 陈闽鄂 MIAO Rong-zhen;ZHOU Yuan-ping;MA Yao-ting;CHEN Min'e(College ofElectronic Information,Sichuan University,Chendu Sichuan 610065,China)
出处 《计算机仿真》 北大核心 2019年第11期167-170,共4页 Computer Simulation
关键词 大规模多输入多输出 虚拟信道 复杂度 Large scale MIMO Virtual channel Complexity
  • 相关文献

参考文献3

二级参考文献9

  • 1倪振文,王俊年,徐学军.衰落相关对分布式MIMO信道容量的影响[J].湖南科技大学学报(自然科学版),2006,21(2):29-33. 被引量:3
  • 2Telatar I E. Capacity of multi-antenna Gaussian channels [J], Eur. Trans. Telecom., 1999-11, 10: 585-595, 被引量:1
  • 3Foschin G J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas [J]. Bell labs Technical Junal, 1996, 1(2): 41-59. 被引量:1
  • 4M O Damen, A Chkeif, J C Belfiore. Lattice codes decoders for space-time codes [J]. IEEE Communications Letters, 2000-05, 4: 161-163. 被引量:1
  • 5Baldur Steingrimsson, Zhi-Quan Luo. Soft Quasi-Maximum-Likelihood Detection for Multiple Antenna Wireless Channels [J]. IEEE Trans.signal processing, 2003-11, 51: 2710-2718, 被引量:1
  • 6Jie Luo, Krishna R Pattipati. Fast Optimal and Suboptimal Any-Time Algorithms for CDMA Multiuser Detection Based on Branch and Bound [J].IEEE Trans.Commun, 2004, 52(4): 632-641. 被引量:1
  • 7Weiyu Xu, Youzheng Wang. Sack Based Detection Algorithms for V-BLAST Wireless System [J]. IEEE Trans.Commun, 2004-02, 34: 149-153. 被引量:1
  • 8M K Varanasi. Decision feedback multiuser detection:a systematic approach [J]. IEEE Trans.Inform.theory, 1999-01, 45:219-240. 被引量:1
  • 9傅海阳,陈技江,曹士坷,贾向东.MIMO系统和无线信道容量研究[J].电子学报,2011,39(10):2221-2229. 被引量:29

共引文献10

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部