期刊文献+

基于整张手腕部DR影像深度学习特征的人工智能骨龄评估方法 被引量:8

Study on Artificial Intelligence Bone Age Assessment Based on Deep Feature Learning for the Whole Hand Digital Radiograph
下载PDF
导出
摘要 目的:探讨基于整张手腕部X线数字摄影(DR)影像深度学习特征的人工智能骨龄评估(AI-BAA)方法。方法:收集本院11858例0~18岁左手腕部骨龄DR图像数据,随机提取20%为验证集、80%为训练集,图像预处理后在resnet101基础上构建多模态信息融合的深度学习模型,优化算法以实现骨龄回归,并通过热力图实现数据模型可视化。另收集本院新近0~17岁1217例骨龄影像数据作为测试集,检验模型效能。采用平均绝对误差(MAE)和散点图评估模型骨龄预测的准确性。结果:模型骨龄预测值和儿科放射医师诊断结果的散点图呈一致性分布,MAE验证集0~18岁整体为(0.469±0.396)岁、男性为(0.453±0.396)岁、女性为(0.480±0.395)岁,测试集0~17岁整体为(0.459±0.371)岁,男性为(0.432±0.334)岁,女性为(0.511±0.429)岁。结论:基于整张手腕部DR影像高阶特征的AI-BAA模型提供了可靠的自动化骨龄检测方法。 Objective:To explore a method of artificial intelligence(AI)bone age assessment(BAA)based on deep feature learning for whole hand digital radiograph.Methods:Eleven thousand eight hundred and fifty-eight left hand digital radiographs of aged from 0 to18 years were collected from shanghai children’s hospital,20%of the total data were randomly extracted as validation set and 80%of the total data were used as training set after preprocessing of standardized image,data enhancement and normalization.On the basis of resnet101,the deep learning model of multimodal information fusion was constructed.The loss function combining L1 loss and L2 loss was selected and optimized by Adam algorithm to build up a bone age regression model.Then the grad-cam method was used to draw the thermodynamic diagram of the concerned area and realize the visualization of the data model.In addition,1217 left hand digital radiographs of aged from 0 to17 years were collected as test data to validate the accuracy and generalization of the model.The mean absolute error(MAE)and scatter plot model were used to evaluate the accuracy of bone age prediction.Results:Bone ages in different gender and age were all accurately assessed by the model in validation set and test set.MAE of bone age predicted by the model and pediatric radiologists was(0.469±0.396)years with(0.453±0.396)years for males and(0.480±0.395)years for females in validation set,and(0.459±0.371)years with(0.432±0.334)years for male and(0.511±0.429)years for female in test set respectively.The scattered plot of bone age evaluated by the model and doctor showed a consistent distribution.Conclusion:The AI BAA model based on higher-order imaging feature of the whole hand digital radiograph may provide a new reliable method of automatic bone age prediction.
作者 李婷婷 杨秀军 王乾 任旭华 兰钧 于广军 李嫔 李莉红 文颖 陈旭 LI Ting—ting;YANG Xiu—jun;WANG Qian(Department of Radiology,Shanghai Children's Hospital,Shanghai Jiao Tong University,Shanghai 200062,P.K.C.)
出处 《中国数字医学》 2019年第11期29-33,共5页 China Digital Medicine
基金 上海交通大学医工交叉重点项目(编号:YG2017ZD08)~~
关键词 人工智能 深度特征学习 骨龄 数字化放射摄影 artificial intelligence deep feature learning bone age digital radiography
  • 相关文献

参考文献4

二级参考文献41

  • 1吴瑞萍.诸福堂实用儿科学(第6版)[M].北京:人民卫生出版社,1997.993. 被引量:3
  • 2Greulich WW, Pyle SI. Radiographic atlas of skeletal development of hand wrist. 2nd ed. Stanford: Stanford University Press, 1971. 被引量:1
  • 3Tanner JM, Healy MJR, Goldstein H, et al. Assessment of skeletal maturity and prediction of adult height (TW3 method). 3rd ed. London: WB Saunders, 2001 : 1- 108. 被引量:1
  • 4Zhang A, Gertych A, Liu BJ. Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput Med Imaging Graph, 2007,31(4-5):299-310. 被引量:1
  • 5Pietka E, Pospiech S, Gertych A, et al. Integration of computer assisted bone age assessment with clinical PACS. Comput Med Imaging Graph, 2003,27(2) :217-228. 被引量:1
  • 6Zhang A, Cao F, Pietka E, et al. Data mining for average images in a digital hand atlas. Proc SHE Med Imag, 2004,5371:251- 258. 被引量:1
  • 7Kennedy J, Eberhart RC. Particle swarm optimization. Proceedings of IEEE international conference on neural networks. NJ : Piscataway, 1995 : 1942-1948. 被引量:1
  • 8Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on.micromachine and human science. Japan: Nagoya, 1995:39- 43. 被引量:1
  • 9刘钊,刘坚,陈建勋.基于PSO的自动化骨龄评估.第一届国际生物信息与生物医学工程会议.中国:武汉,2007:445-447. 被引量:1
  • 10Bull RK, Edwards PD, Kemp PM, et al. Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child, 1999,81 (2) : 172- 173. 被引量:1

共引文献75

同被引文献60

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部