摘要
针对传统基于测地线的泊松融合方法中插值旋转场与尺度场计算量大而影响交互建模的应用,提出了基于复用拉普拉斯算子的高效融合方法.该方法将几何融合、旋转场与尺度场的插值问题均转化为拉普拉斯(泊松)方程进行求解,仅需一次Cholesky分解和多次回代计算,得到融合所需的8个标量场,比起传统基于测地线的插值方法快两个数量级;随后,运用基于约束Delaunay三角化与离散极小曲面的鲁棒方法对融合边界处的网格进行优化,实现网格的高效融合.同时,再次复用拉普拉斯算子,在进行几何融合的同时,实现了纹理坐标的快速融合.该算法不仅能够处理具有复杂拓扑与多个边界模型,并获得与传统泊松融合方法相媲美的实验结果,而且显著地提高了效率,能够满足交互响应的需求.
Traditional geodesic-based Poison merging method requires time-consuming computation of rotational and scale fields,which restricts its interactive applications.This study proposed an efficient mesh merging method with reusable Laplacian operator.The method reduces problems of geometry merging,interpolation of rotational and scale fields into solving linear equations with the same Laplace matrix.It obtains eight scalar fields used in merging step by conducting Cholesky decomposition once and back substitutions several times,which is two orders of magnitude faster than the traditional geodesic-based method.To optimize the mesh nearby the merging boundary,it uses a robust method based on constrained Delaunay triangulation and discrete minimal surface.Meanwhile,it adopts reusable Laplacian operator again to merge the texture coordinates along with the geometry merging.The proposed method can handle models with complex topology and multiple boundaries,and the results are comparable to the traditional Poisson method but with much less time cost.The advantages make it capable of meeting the requirements of interactive response.
作者
金耀
熊宇龙
周泳全
张华熊
何利力
JIN Yao;XIONG Yu-Long;ZHOU Yong-Quan;ZHANG Hua-Xiong;HE Li-Li(Institute of Graphics and Data Intelligence,School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou,310018,China;School of Mechanical and Electronic Engineering,Shenzhen Institute of Information Technology,Shenzhen 518172,China)
出处
《软件学报》
EI
CSCD
北大核心
2019年第12期3862-3875,共14页
Journal of Software
基金
浙江省自然科学基金(LY17F020031)
国家自然科学基金(61702458,61602416)
广东省科技计划(2015A 050502006)
深圳市科技计划(GJHZ20150316112419786)
浙江省科学技术厅重大科技专项重点社会发展项目(2015C03001)
浙江省服装个性化定制协同创新中心项目(浙教高科[2016]63号)
浙江理工大学启动基金(15032166-Y)~~
关键词
网格融合
纹理坐标融合
泊松方程
可复用拉普拉斯算子
光滑插值
mesh merging
texture coordinates merging
Poisson equation
reusable Laplacian operator
smooth interpolation