摘要
行波解是反应扩散方程的一类重要的稳态解,可以解释自然界中振荡现象,在生态学、传染病学等领域有重要的应用价值,因此研究非局部时滞反应扩散方程行波解的存在性与稳定性是非常必要的。对此,利用行波解理论,结合前人研究的基础上,通过Schauder、Fubini's等定理对一类具有非局部扩散的时滞传染病SIR模型行波解的存在性进行了分析与证明。
The traveling wave solution is a kind of important steady-state solution of the reaction diffusion equation,which is very important for explaining the oscillation phenomenon in nature,and has important application value in ecology,epidemiology and other fields.Therefore,it is very necessary to study the existence and stability of the traveling wave solution of the non-local time-delay reaction diffusion equation.Based on the traveling wave solution theory and previous studies,the existence of traveling wave solutions for a class of SIR model of time-delay infectious diseases with non-local diffusion is analyzed and proved by Schauder and Fubini's theorems.
作者
张敏华
Zhang Minhua(Yango University,Fuzhou,Fujian 350015)
出处
《绥化学院学报》
2019年第12期147-151,共5页
Journal of Suihua University
基金
2018年度福建省教育厅中青年教师教育科研项目“一类非局部扩散模型解的若干性质”(JT180734)
关键词
非局部时滞反应扩散方程
行波解
存在性
non-local time-delay reaction diffusion equation
travelling wave solutions
existence