期刊文献+

硅氧碳-石墨复合材料储锂机理研究

Li-storage mechanism of SiO/graphite compound materials
下载PDF
导出
摘要 通过对比分析氧化亚硅碳(SiO)、石墨(Graphite)及其组成的复合材料(SiO/Gr)的充电特征曲线,明确了SiO/Gr复合材料在脱嵌锂过程中的锂离子储放机理:嵌锂反应中,在初始电位至0.24 V电压区间,石墨自身容量的7%,SiO自身容量的90%先得到发挥;在[0.24 V,0.005 V]区间,SiO和石墨的剩余容量得到完全发挥;脱锂过程同嵌锂过程相反,依据上述结论和SiO/Gr的放电曲线计算其各组成容量的占比,结果与实际容量占比对比相同。根据上述复合材料的储锂机理,分析了不同过量比设计参数与SiO发挥容量占负极总容量比例关系,预测并验证了过量比设计参数与电池循环寿命的相关关系。 The lithium ion storage mechanism of SiO/Gr composite material was investigated using electrochemical analyses by comparing the discharge curves of SiO,graphite and its composite materials.The results reveal that the capacity of 7%graphite and 90%SiO in the compound material is released between the initial voltage and 0.24 V firstly,and then the residual capacity plays a role until the voltage reaches 5 mV.The conclusion is verified by means of comparing the real ratio of SiO in SiO/Gr with the calculated value obtained by the discharge curve.On the basis of the conclusion,the relationship between N/P ratio and the real capacity proportion of SiO and its influence on cycle life of lithium ion batterywas studied and validated by experiments.
作者 连林 郑媛媛 靳承铀 LIAN LIN;ZHENG Yuan-yuan;JIN Cheng-you(Zhongtian Energy Storage Technology Co.,Ltd.,Nantong Jiangsu 226000,China)
出处 《电源技术》 CAS 北大核心 2019年第11期1761-1763,1770,共4页 Chinese Journal of Power Sources
基金 江苏省重点研发计划——产业前瞻与共性关键技术项目(BE2016008-4)
关键词 硅碳-石墨 复合材料 循环寿命 SiC-graphite composite material cycle life
  • 相关文献

参考文献2

二级参考文献28

  • 1张勇,刘畅,李峰,成会明.纳米碳管结构差异对树脂炭包覆硅/纳米碳管复合材料电化学性能的影响[J].新型炭材料,2006,21(4):307-314. 被引量:5
  • 2KASAVAJJULA U, WANG C, APPLEBY A J. Nano- and bulk- silicon-based insertion anodes for lithium-ion secondary cells [J] Journal of Power Sources, 2007, 163(2): 1003-1039. 被引量:1
  • 3ZHENG Y, YANG J, WANG J, et al. Nano-porous Si/C composites for anode material of lithium-ion batteries[J]. Electrochimica Acta, 2007, 52(19): 5863-5867. 被引量:1
  • 4LI M Q, QU M Z, HE X Y, et al. Electrochemical properties of Li2ZrO3-coated silicon/graphite/carbon composite as anode material for lithium ion batteries[J]. Journal of Power Sources, 2009, 188(2): 546-551. 被引量:1
  • 5ZENG Z Y, TU J P, YANG Y Z, et al. Nanostructured Si/TiC composite anode for Li-ion batteries[J]. Electrochimica Acta, 2008, 53 (6): 2724-2728. 被引量:1
  • 6CHEN L B, XIE J Y, YU H C, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries[J]. Electroehimica Acta, 2008, 53(28): 8149-8153. 被引量:1
  • 7SUN Z B, WANG X D, LI X P, et al. Electrochemical properties of melt-spun A1-Si-Mn alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2008, 182(1): 353-358. 被引量:1
  • 8KIM T, MO Y H, NAHM K S, et al. Carbon nanotubes (CNTs) as a buffer layer in silicon-CNTs composite electrodes for lithium secondary batteries[J]. Journal of Power Sources,2006, 162(2): 1275- 1281. 被引量:1
  • 9SHU J, LI H, YANG R, et al. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries [J]. Electroche- mistry Communications, 2006, 8(1): 51-54. 被引量:1
  • 10ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon-graphite-carbon nanotubes for Li-ion batteries [J]. Electrochimica Acta, 2006, 51 (23): 4994-5000. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部