期刊文献+

无监督条件下跨领域目标识别关键技术研究

Research on Key Technologies for Cross-domain Object Recognition under Unsupervised Conditions
下载PDF
导出
摘要 人工智能与机器识别技术的发展加快了社会的进步,传统机器学习的方法并不适用于所有的环境,这就要求目标识别算法能够在半监督或无监督情况下进行训练。本文提出基于结构化联合分布适配的无监督大样本跨领域目标识别算法模型。为实现无监督少样本条件下的跨领域目标识别提供新的思路与方法。 The development of artificial intelligence and machine recognition technology has accelerated the progress of society.Traditional machine learning methods are not applicable to all environments,which requires that target recognition algorithms can be trained under semi-supervised or unsupervised conditions.This paper presents an unsupervised large sample cross-domain target recognition algorithm model based on structured joint distributed adaptation.It provides new ideas and methods for cross-domain target recognition under the condition of unsupervised and few samples.
作者 周丽丽 杜寅甫 ZHOU Li-li;DU Yin-fu(Institute of Intelligent Manufacturing,Heilongjiang Academy of Sciences,Harbin 150090 China;Heilongjiang Academy of Sciences High Technology Research Institute,Harbin 150020 China)
出处 《自动化技术与应用》 2019年第11期168-171,共4页 Techniques of Automation and Applications
关键词 目标监测与识别 无监督学习 跨领域识别 target monitoring and recognition unsupervised learning cross-domain recognition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部