期刊文献+

基于自适应调节极大熵的孪生支持向量回归机 被引量:2

Twin support vector regression based on adaptive adjustment maximum entropy
下载PDF
导出
摘要 孪生支持向量回归机(Twin Support Vector Regression,TSVR)的数学模型是求解一对约束优化问题,如何将约束优化问题转化为无约束优化问题进行求解是一个难题.在TSVR约束优化模型的基础上,依据最优化理论提出TSVR的无约束优化问题.然而,无约束优化问题的目标函数有可能不可微,为解决这个问题,引入极大熵函数,确保优化问题都是可微的.标准的极大熵函数法有可能发生数值溢出,所以对极大熵函数法进行了改进,提出自适应调节极大熵函数法来逼近TSVR的不可微项,并提出基于自适应调节极大熵函数法的TSVR学习算法.实验结果表明,和其他回归方法相比,所提算法不仅能够提高回归精度,而且效率得到了较大的提高. The mathematical model of twin support vector regression(TSVR)is to solve a pair of constrained optimization problems.How to transform constrained optimization problems into unconstrained optimization problems is a difficult problem.Based on the TSVR constrained optimization model,the unconstrained optimization problem of TSVR is established according to the optimization theory.In order to solve the problem of unconstrained optimization,the maximum entropy function is introduced to transform the original optimization problem into a differentiable unconstrained optimization problem.However,the standard maximum entropy function method may lead to the occurrence of numerical spillovers.In this paper,we improve the maximum entropy function method,propose the adaptive maximum entropy function method,and use it to approximate the non-differentiable term of TSVR.We propose a TSVR model based on the adaptive maximum entropy function method.The experimental results show that compared with other regression methods,the proposed algorithm can not only improve the regression accuracy,but also greatly improve the efficiency.
作者 黄华娟 韦修喜 Huang Huajuan;Wei Xiuxi(College of Information Science and Engineering,Guangxi University for Nationalities,Nanning,530006,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期1030-1039,共10页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61662005) 广西自然科学基金(2018JJA170121) 广西高校中青年教师科研基础能力提升项目(2019KY0195)
关键词 孪生支持向量回归机 优化理论 极大熵函数法 自适应 Newton算法 twin support vector regression optimization theory maximum entropy function method adaptation Newton method
  • 相关文献

参考文献5

二级参考文献65

  • 1毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 2Guyon I, Elisseeff A. An introduction to variable and feature selection. The Journal of Machine Learning Research, 2003, 3:1157-1182. 被引量:1
  • 3Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46(1-3): 389-422. 被引量:1
  • 4Rakotomamonjy A. Variable selection using svm based criteria. The Journal of Machine Learning Research, 2003, 3: 1357- 1370. 被引量:1
  • 5Duan K B, Rajapakse J C, Wang H, et al. Multiple SVM- RFE for gene selection in cancer classification with expression data. IEEE Transactions on NanoBioscience, 2005, 4(3): 228-234. 被引量:1
  • 6Xia H, Hu B Q. Feature selection using fuzzy support vector machines. Fuzzy Optimization and Decision Making, 2006, 5(2): 187-192. 被引量:1
  • 7Zhou X, Tuck D P. MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics, 2007, 23(9): 1106-1114. 被引量:1
  • 8Maldonado S, Weber R. A wrapper method for feature selection using support vector machines. Information Sciences, 2009, 179(13): 2208-2217. 被引量:1
  • 9Somol P, Novovicova J. Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 1921-1939. 被引量:1
  • 10Tapia E, Bulacio P, Angelone L. Sparse and stable gene selection with consensus SVM-RFE. Pattern Recognition Letters, 2012, 33(2): 164-172. 被引量:1

共引文献112

同被引文献36

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部