期刊文献+

基于CNN的多尺度特征在手写数字识别中的应用 被引量:4

Application of Multi-scale Features in MNIST Based on CNN
下载PDF
导出
摘要 在手写数字识别数据集(MNIST)情景下,为了提高卷积神经网络的识别正确率,提出了一种改进的基于卷积神经网络(CNN)的多尺度特征识别算法.首先,利用卷积操作和池化操作提取图像中的全局特征及局部特征,通过二次卷积与特征融合获得数字图像的多尺度特征.然后,将多尺度特征送入全连接网络和SoftMax分类器,实现手写数字图像识别.最后,通过对不同网络结构的CNN算法进行评估表明,本文提出的算法可以有效提高网络精度,具有较好的泛化能力. In order to improve the recognition accuracy of convolutional neural networks(CNN)within MINIST handwritten digit recognition data sets,this paper proposes an improved multi-scale features recognition algorithm based on CNN.Firstly,the global and local features are extracted by convolution and pooling operations,and multi-scale features of digital images are obtained by quadratic convolution and feature fusion.Then,multi-scale features are fed into full-connection network and SoftMax classifier to recognize handwritten digital images.Finally,a comprehensive evaluation of CNN algorithms with different network structures shows that the method can effectively improve network accuracy,and has good generalization ability.
作者 仲会娟 谢朝和 刘文武 刘大茂 ZHONG Huijuan;XIE Chaohe;LIU Wenwu;LIU Damao(College of Artificial Intelligence,Yango University,FuZhou,Fujian 350015)
出处 《绵阳师范学院学报》 2019年第11期22-26,共5页 Journal of Mianyang Teachers' College
基金 2018年福建省中青年教师教育科研项目(JT180724)
关键词 卷积神经网络 多尺度特征 手写数字识别数据集 全局特征 局部特征 convolutional neural networks(CNN) multi-scale features handwritten digit recognition data sets(MNIST) global features local features
  • 相关文献

参考文献7

二级参考文献15

  • 1Bengio Y, et al. Greedy Layer-Wise Training of Deep Networks [ C ]// NIPS ,2007. 被引量:1
  • 2Arel I,et al. Deep Machine Learning-A New Frontier in Artificial In- telligence Research [ J ]. Computational Intelligence Magazine , IEEE, 2010,5(1) :13 -18. 被引量:1
  • 3Hinton G E ,et al. A Fast Learning Algorithm for Deep Belief Nets[ J]. Neural Computation ,2006,18 : 1527 - 1554. 被引量:1
  • 4Pouhney C, et al. Efficient Learning of Sparse Representations with an Energy-Based Model[ M ]. Presented at the NIPS, New York ,2006. 被引量:1
  • 5Dahl G,et al. Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition[ J]. IEEE Transactions on Audi- o, Speech, and Language Processing,2011,20:30 - 42. 被引量:1
  • 6Lti G. Recognition of multi-fontstyle characters based on Convolutional neural network [ C ]//Presented at the Computational Intelligence and Design ( ISCID), HANGZHOU ,2011. 被引量:1
  • 7Ackley H ,et aL A learning algorithm for Boltzmann machines[ J]. Cog- nitive Science, 1985,9 : 147 - 169. 被引量:1
  • 8Hinton G. Training products of experts by minimizing contrastive diver- gence[ J]. Neural Computation ,2002,14 : 1771 - 1800. 被引量:1
  • 9Hardisty E, Resnik P. Gibbs Sampling for the Uninitiated [ M ]. Ber- noulli 4956,2010. 被引量:1
  • 10Bergstra J, et al. Theano : A CPU and GPU Math Expression Compiler [C]//Presented at the the Python for Scientific Computing Confer- ence ,2010. 被引量:1

共引文献85

同被引文献29

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部