期刊文献+

“病毒”营销策略下报童问题研究 被引量:2

Impact of ‘Virus’ Marketing Strategy on the Newsvendor Problem
下载PDF
导出
摘要 以报童问题为基准问题,采用多智能体建模方法分析当企业实施病毒营销后的产品订购量问题。鉴于市场中消费者组成的"小世界"社会关系网络,企业将从所有消费者中选择一个作为源头节点,实施其病毒营销策略。同时,企业需要根据病毒营销的结果设定一个收益最大的产品订货量。通过模型的仿真求解,验证了此类问题数学分析的局限性。仿真结果表明:企业可以通过增强用户群体之间的关系、用户的口碑接受程度以及降低产品单位成本来有效提高收益。并且,社会网络分析中接近中心性指标是用于选择病毒营销源头节点的最佳评价指标。 This paper studies the impact of the ‘virus’ marketing strategy on the classical newsvendor problem. In the market, the relationships between all consumers form a so called ‘small-world’ social network. Therefore, the firm proposes to startup a virus marketing practice on this social network. Besides, to find a source node to diffuse word-of-mouth, the firm also needs to make decision on the order quantity to maximize the profit. The simulation results show that the solution based on mathematics analysis overestimates the demand and leads to a serious loss of profit. More importantly, the results reveal that the firm could benefit efficiently from tighter relationships, better acceptance among consumers, and the decrease in unsold cost of unit product. In addition, closeness centrality by social network analysis is a better method to choose a source node for virus marketing on small-world network.
作者 李锋 林宁 魏莹 LI Feng;LIN Ning;WEI Ying(School of Business Administration,South China University of Technology,Guangzhou 510640,China;Department of Business Administration,Jinan University,Guangzhou 510632,China)
出处 《系统管理学报》 CSSCI CSCD 北大核心 2019年第6期1188-1194,共7页 Journal of Systems & Management
基金 广东省自然科学基金资助项目(2014A030313262) 国家自然科学基金资助项目(71572070)
关键词 报童问题 病毒营销 小世界网络 多智能体建模与仿真 社会关系网络 newsvendor problem virus marketing small-world network multi-agent modeling and simulation social network
  • 相关文献

参考文献6

二级参考文献106

  • 1李锋,魏莹.消费者理性程度对供应链定价影响的仿真研究[J].系统仿真学报,2015,27(12):2898-2907. 被引量:5
  • 2Damian H Zanette.Dynamics of rumor propagation on small-world networks[Z].cond-mat,2001,0110324. 被引量:1
  • 3Yamir Moreno,Maziar Nekovee,Amalio F.Pacheco1,Dynamics of rumor spreading in complex networks[J].Phys.Rev.E,2004,69,066130. 被引量:1
  • 4P Holme,B J Kim.Growing scale-free networks with tunable clustering[J].Phys.Rev.E,2002,65,026107. 被引量:1
  • 5DJDaley DGKendall.Epidemics and rumours[J].Nature,1964,204:1118-1118. 被引量:1
  • 6D Maki,M Thomson.Mathematical models and applications[M].Prentice-Hall,Englewood Cliff,1973. 被引量:1
  • 7J D Murray.Mathematical Modelling in Epidemiology[M].Springer,Berlin,1980. 被引量:1
  • 8SHStrogatz.Exploring complex networks[J].Nature,2001,410:268-276. 被引量:1
  • 9R Albert,A L Barabasi.Statistical mechanics of complex network.[J].Rev.Mod.Phys,2002,74:47-97. 被引量:1
  • 10S N Dorogovtsev,J F F Mendes.Evolution of networks[J].Advances in Physics,2002,51:1079-1187. 被引量:1

共引文献223

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部