期刊文献+

一类Kirchhoff型问题无穷多解的存在性 被引量:2

Existence of Infinitely Many Solutions for a Class of Kirchhoff-Type Problems
下载PDF
导出
摘要 本文应用变分方法和截断技巧研究一类具有Neumann边值条件的Kirchhoff型方程.首先,通过方程对应的能量泛函及解的定义获得平凡解的等价条件;其次,对非线性项进行了奇假设证明了紧致性条件;最后,立足于空间分解来获得该问题存在无穷多解,并且它们对应的能量泛函收敛到零. In this paper,we use a variational method and a truncation technique to study a class of Kirchhoff-type equations for Neumann boundary value problems.Firstly,the equivalence condition of trivial solutions is obtained by the definition of energy functionals and solutions corresponding to the equations;Secondly,the condition of compactness is proved by the odd hypothesis of the nonlinear term;Finally,the existence of infinite solutions is obtained based on spatial decomposition,and the corresponding energy functionals have zero gradation.
作者 叶红艳 索洪敏 安育成 YE Hongyan;SUO Hongmin;AN Yucheng(College of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;College of Science,Guizhou University of Engineering Science,Bijie 551700,China)
出处 《应用泛函分析学报》 2019年第3期260-267,共8页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(11661021,11861021) 贵州民族大学科研基金(2017YB081)
关键词 变分方法 Kirchhoff型方程 NEUMANN边值 截断技巧 无穷多解 variational method Kirchhoff-type equations Neumann boundary truncation technique infinite solutions
  • 相关文献

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部