期刊文献+

基于主题模型的百科知识库实体对齐 被引量:5

Entity alignment for encyclopedia knowledge base based on topic model
下载PDF
导出
摘要 针对传统实体对齐方法无法体现潜在语义信息的问题,对其进行优化,使实体对齐效果更加显著。使用潜在狄利克雷分配(latent Dirichlet allocation,LDA)模型对网络百科非结构化数据进行建模,采用改进的置信传播(belief propagation,BP)算法求解LDA模型中的隐藏参数,进而生成实体特征向量进行相似度计算,通过计算结果判断是否可以对齐。实验结果表明,通过与三种传统算法进行比较,所提算法在准确率、召回率和综合指标F值三个评价指标方面均有所提高。针对具有描述信息的网络百科实体,该算法可以有效提升实体对齐效果。 Aiming at the problem that traditional entity alignment method could not reflect latent semantic information,this paper optimized it,making the effect of entity alignment more significant.It used the LDA model to model the unstructured data of the network encyclopedia,and adopted the improved BP algorithm to solve the hidden parameters of LDA model,in turn,generated entity eigenvectors to perform similarity calculation.Finally,through calculation results could determine whether alignment.The experimental results show that,through comparing with three kinds of traditional algorithms,the proposed algorithm increases the three-evaluation index that above precision,recall and F-score.Aiming at the network encyclopedia entity with description information,the algorithm can effectively improve the entity alignment effect.
作者 刘振鹏 贺梦洁 张彬 董静 徐建民 Liu Zhenpeng;He Mengjie;Zhang Bin;Dong Jing;Xu Jianmin(College of Electronic Information Engineering,Hebei University,Baoding Hebei 071002,China;Information Technology Center,Hebei University,Baoding Hebei 071002,China;School of Cyber Security&Computer,Hebei University,Baoding Hebei 071002,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第11期3286-3289,3343,共5页 Application Research of Computers
基金 河北省自然科学基金资助项目(2015201142)
关键词 实体对齐 潜在狄利克雷分配模型 置信传播算法 知识融合 entity alignment LDA model BP algorithm knowledge fusion
  • 相关文献

参考文献12

二级参考文献245

  • 1Bemers-Lee T. Linked Data-Design Issues[OL].http://www.w3.org/DesignIssues/LinkedData.html,. 被引量:1
  • 2Manola F,Miller E. RDF Primer.W3C[OL].http://www.w3c.org/TR/rdf-primer/,February,2004. 被引量:1
  • 3Heath T,Bizer C. Linked Data:Evolving the Web into a Global Data Space[M].Synthesisi Lectures on the Semantic Web:Theory and Technology,2011. 被引量:1
  • 4Bizer C,Heath T,Berners-Lee T. Linked data-the story so far[J].Int J Semantic Web Inf Syst,2009,(03):1-22. 被引量:1
  • 5Hogan A,Harth A,Decker S. Performing Object Consolidation on the Semantic Web Data Graph[M].2007. 被引量:1
  • 6Sleeman J,Finin T. Computing FOAF Co-reference Relations with Deductionand Machine Learning[A].2010. 被引量:1
  • 7Raimond Y,Sutton C,Sandler M. Automatic Interlinking of Music Datasets on the Semantic Web[A].2008. 被引量:1
  • 8Volz J,Bizer C,Gaedke M. Silk-A Link Discovery Framework forthe Web of Data[A].2009. 被引量:1
  • 9Song D,Heflin J. Domain-independent entity coreference in RDF graphs[A].2010.1821-1824. 被引量:1
  • 10Winkler W. The state record linkage and current research problems[R].Technical report.Statistics of Income Division,Internal Revenue Service Publication,1999. 被引量:1

共引文献626

同被引文献96

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部