期刊文献+

基于卷积神经网络的医学宫颈细胞图像的语义分割 被引量:7

SEMANTIC SEGMENTATION OF MEDICAL CERVICAL CELL IMAGES BASED ON CONVOLUTIONAL NEURAL NETWORK
下载PDF
导出
摘要 显微细胞分割的精度直接影响疾病的判别诊断,特别在宫颈细胞的显微病理图像中,细胞核的形态大小、与细胞质之间的比例参数等对于病情的良恶诊断具有重大的意义.为提高宫颈细胞核质分割的精度,提出一种基于卷积神经网络的医学宫颈细胞图像的语义分割方法.标定宫颈细胞显微图像中的细胞核和细胞质轮廓,制作基于长沙市第二人民医院的基于新柏氏液基细胞学检测TCT(Thinprep cytologic test)制片技术的宫颈TCT细胞涂片的CCTCT数据集;通过卷积神经网络对核质分割模型进行训练,避免人工提取特征;通过反卷积达到图像的语义分割.实验结果表明,该算法在宫颈细胞的显微病理图像中的核质分割准确率高达94.7%,具有很高的鲁棒性和适应性. The accuracy of microscopic cell segmentation directly affects the differential diagnosis of diseases.Especially in the microscopic pathological images of cervical cells,the shape and size of nucleus and the ratio parameters between cytoplasm are of great significance for the diagnosis of disease.In order to improve the accuracy of cervical nucleus segmentation,this paper proposed a semantic segmentation method of medical cervical cell images based on convolutional neural network.We calibrated the nuclear and cytoplasm contours of cervical cells in microscopic images,and produced CCTCT data set of cervical TCT cell smears based on TCT technology in Second People s Hospital of Changsha City.Then,the nuclear and cytoplasm segmentation model was trained by convolution neural network to avoid manual feature extraction.And the semantics of image was segmented by deconvolution.The experimental results show that the our algorithm has an accuracy of 94.7%in the microscopic pathological images of cervical cells,and the algorithm has high robustness and adaptability.
作者 李智能 刘任任 梁光明 Li Zhineng;Liu Renren;Liang Guangming(College of Information Engineering,Xiangtan University,Xiangtan 411105,Hunan,China;School of Computer,National University of Defense Technology,Changsha 410000,Hunan,China)
出处 《计算机应用与软件》 北大核心 2019年第11期152-156,共5页 Computer Applications and Software
基金 国家自然科学基金项目(60673193)
关键词 语义分割 卷积神经网络 核质分割 宫颈细胞显微图像 Semantic segmentation Convolutional neural network Nuclear and cytoplasm segmentation Cervical cell microscopy
  • 相关文献

参考文献6

二级参考文献39

  • 1赵钦佩,姚莉秀,刘瑞明,杨杰.一种新的基于背景的红外图像分割方法[J].计算机仿真,2007,24(5):202-205. 被引量:22
  • 2王媛媛,彭延军.流域分割方法在储粮昆虫图像中的应用[J].山东科技大学学报(自然科学版),2007,26(2):79-82. 被引量:4
  • 3T Akimoto, Y Suenaga, R S Wallace. Automatic Creation of 3D Facial Models [ J ]. IEEE Computer Graphics and Applications, 1993,13(5). 被引量:1
  • 4Ju Han, B Bhanu. Individual recognition using gait energyimage ( digital object identifier) [ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006,10 ( 2 ). 被引量:1
  • 5Yang Feng, Ma Zheng, Xie Mei. A Novel Approach for License Plate Character Segmentation[ C ]. 2006, IEEE Conference on Sig- nal Processing, 2000 : 1409 - 1414. 被引量:1
  • 6Terzopoulos D.Visual modeling for computer animation:Graphics with a vision[J].Computer Graphics (ACM),1999,33(4):42-45. 被引量:1
  • 7Cohen L D.Multiple contour finding and perceptual grouping using minimal paths[J].Mathematical Imaging and Vision,2001,14(3):225-236. 被引量:1
  • 8Amini A A,Chen Y,Elayyadi S,et al.Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces[J].IEEE Transactions on Medical Imaging,2001,20(2):94-103. 被引量:1
  • 9Shah M.Guest introduction:The changing shape of computer vision in the twenty-first century[J].International Journal of Computer Vision,2002,50(2):103-110. 被引量:1
  • 10McInerny T,Terzopoulos D.Topology adaptive deformable surfaces for medical image volume segmentation[J].IEEE Transactions on Medical Imaging,1999,18(10):840-850. 被引量:1

共引文献25

同被引文献42

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部