期刊文献+

滚动轴承振动的非线性特征与性能保持可靠性分析 被引量:3

Analysis of Nonlinear Characteristic and Performance Continuity Reliability of Rolling Bearing Vibration
下载PDF
导出
摘要 为了分析滚动轴承振动的非线性特征与性能保持可靠性之间的关系,以混沌理论为基础,提出关联维数保持性的新概念,用其刻画滚动轴承振动的非线性特征;同时,基于最大熵原理和泊松计数原理,建立振动性能保持可靠性模型,进而建立滚动轴承振动的非线性特征与振动性能保持可靠性匹配序列。实验结果表明,滚动轴承振动的非线性特征与振动性能保持可靠性关系密切,它们的变化趋势具有一致性,可以根据关联维数保持性的变化趋势来推断振动性能保持可靠性的变化趋势。所提方法为滚动轴承的可靠性预测提供了一个新的思路。 In order to analyze the relationship between the nonlinear characteristics and the performance continuity reliability of rolling bearing vibration,based on chaos theory,a new concept is proposed for continuity relation dimension to characterize the nonlinear characteristics of rolling bearing vibration.Simultaneously,based on the maximum entropy principle and Poisson counting principle,the vibration performance continuity reliability model of the rolling bearing is established,and then the matching sequence of nonlinear characteris tics and the vibration performance continuity reliability of the rolling bearing vibration are established.The ex perimental results show that the evolution of nonlinear characteristics and the vibration performance continuity reliability of rolling bearing vibration are closely related to each other,and the trend of change is consistent and reliability changes can be inferred based on the changing trend of the relation dimension.The proposed method provides a novel idea for the reliability prediction of rolling bearings.
作者 程立 夏新涛 叶亮 Cheng Li;Xia Xintao;Ye Liang(School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China;School of Mechanical Engineering,Northwestern Polytechnical University,Xi′an 710072,China)
出处 《机械传动》 北大核心 2019年第10期104-112,117,共10页 Journal of Mechanical Transmission
基金 国家自然科学基金(51475144) 河南省自然科学基金(162300410065)
关键词 混沌理论 关联维数保持性 泊松计数原理 性能保持可靠性 Chaos theory Continuity relation dimension Poisson counting principle Performance continuity reliability
  • 相关文献

参考文献13

二级参考文献82

共引文献72

同被引文献28

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部