期刊文献+

基于多源融合FCN的冠脉图像分割方法研究 被引量:2

Research on coronary image segmentation based on multi-source fusion FCN
下载PDF
导出
摘要 为了对冠状动脉图像的精确分割,提出了一种基于多源融合FCN的冠脉图像分割方法研究.首先对原始CTA图像进行双边滤波和LOG算子处理,并将处理后的图像与原始图像共同构成多源图像作为输入,将传统全卷积网络拓展成具有多源融合特色的分割模型.通过一系列的实验表明了全卷积神经网络在冠状动脉图像分割上的有效性. In order to accurately segment the coronary artery image,a coronary image segmentation method was proposed based on multi-source fusion FCN.In this method,the original CTA image was firstly processed by bilateral filter and LOG operator;then the processed image and the original image were combined to form a multi-source image as the input;finally,the traditional full convolution network was expanded into a segmentation model with multi-source fusion characteristics.The effectiveness of the full convolutional neural network in coronary artery image segmentation was indicated through a series of experiments.
作者 段军 常一凡 DUAN Jun;CHANG Yifan(Mining Research Institute,Inner Mongolia University of Science and Technology,Baotou 014000,China;Information Engineering School,Inner Mongolia University of Science and Technology,Baotou 014000,China)
出处 《内蒙古科技大学学报》 CAS 2019年第3期277-282,共6页 Journal of Inner Mongolia University of Science and Technology
基金 国家自然科学基金资助项目(61663036)
关键词 冠状动脉分割 全卷积神经网络 多源融合 多尺度特征 深度可分卷积 coronary artery segmentation full convolutional neural network multi-source fusion multiscale feature depthwise separable convolutions
  • 相关文献

参考文献8

二级参考文献76

  • 1杨琨,曾立波,王殿成.数学形态学腐蚀膨胀运算的快速算法[J].计算机工程与应用,2005,41(34):54-56. 被引量:43
  • 2尹星云,时慧坤.数学形态学在灰度图像处理中的理论和应用[J].电脑知识与技术,2006(6):191-192. 被引量:5
  • 3韩九强,胡怀中,张新曼.机器视觉技术及应用.北京:高等教育出版社,2009. 被引量:1
  • 4张铮,王艳平,薛桂香.数字图像处理与机器视觉-Visualc++与Matlab实现.北京:人民邮电出版社,2010:336-343. 被引量:4
  • 5Sirithinaphong T, Chamnongthai K. Extracting of car license plate using motor vehicle regulation and character patter recognition. IEEE AsiaPacific Conference on Circuits and Systems,1998:559-562. 被引量:1
  • 6Bai Xiangzhi, Zhou Fugen. Multi scale top-hat transform based algo- rithm for image enhancement. 2010 IEEE 10th International Confer- ence on Signal Processing (ICSP) ,2010:797-800. 被引量:1
  • 7鲍红利.基于机器视觉的砂型缺陷在线检测系统研究与设计.镇江:江苏大学,2012. 被引量:1
  • 8Yao Z, Yi W. License plate detection based on multistage information fusion[J]. Information Fusion, 2014,18:78-85. 被引量:1
  • 9Sermanet P, Eigen D, Zhang X, et al. Overfeat: Integrated recognition, localization and detection using convolutional net- works[J], arXiv Preprint arXiv 1312. 6229,2013. 被引量:1
  • 10Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. Columbus IEEE, 2014: 1717-1724. 被引量:1

共引文献115

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部