期刊文献+

An Elasticity Model Considering Grain Boundaries and Tensile Orientations for Directionally Solidified Superalloys

下载PDF
导出
摘要 In order to investigate the elastic properties of directionally solidified(DS)superalloys,an elasticity model called boundaries elastic model(GBE model),considering grain boundaries and tensile orientations,is proposed in this paper.Two assumptions are adopted in the GBE model:(1)The displacement of grains,which moves along the perpendicular direction,is restricted by the grain boundaries;(2)Grain boundaries influence region(GBIR)is formed around the grain boundaries.Based on the single crystal(SC)calculation method of elastic properties,the GBE model can well predict macroscopic equivalent elastic modulus(Young’s modulus)of DS superalloys under different tensile orientations effectively.To demonstrate the correctness of the GBE model,3D finite element simulation is adopted and tensile experiments on a Ni3Al?base DS superalloy(IC10)along five tensile orientations are carried out.Meanwhile,the grain boundaries are observed by light microscopy and transmission electron microscope(TEM).Therefore,the GBE model is proved to be feasible by comparing the simulated results with the experiments. In order to investigate the elastic properties of directionally solidified(DS)superalloys,an elasticity model called boundaries elastic model(GBE model),considering grain boundaries and tensile orientations,is proposed in this paper. Two assumptions are adopted in the GBE model:(1)The displacement of grains,which moves along the perpendicular direction,is restricted by the grain boundaries;(2) Grain boundaries influence region(GBIR) is formed around the grain boundaries. Based on the single crystal(SC)calculation method of elastic properties,the GBE model can well predict macroscopic equivalent elastic modulus(Young’s modulus)of DS superalloys under different tensile orientations effectively. To demonstrate the correctness of the GBE model,3 D finite element simulation is adopted and tensile experiments on a Ni3 Al-base DS superalloy(IC10)along five tensile orientations are carried out. Meanwhile,the grain boundaries are observed by light microscopy and transmission electron microscope(TEM). Therefore,the GBE model is proved to be feasible by comparing the simulated results with the experiments.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期652-662,共11页 南京航空航天大学学报(英文版)
基金 supported by the National Natural Science Foundation of China (No.51205190) the Fundamental Research Funds for the Central Universities (No.NS2016026) the Aeronautical Power Science Fund Project (No. 6141B090317) the Innovation Fund of Jiangsu Province, China (No.KYLX-0304)
  • 相关文献

参考文献1

二级参考文献4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部