期刊文献+

基于支持向量机的精纺毛织物透气性预测 被引量:2

Prediction of the worsted fabrics′ air permeability based on support vector machine
下载PDF
导出
摘要 为了能够快速、高效地预测精纺毛织物材料透气性,首先对精纺毛织物透气性参数之间的关系进行分析,然后,基于对现有的精纺毛织物透气性预测方法进行比较分析,并借助支持向量机训练速度快、参数选择少的优点,构建了一种基于支持向量机的精纺毛织物透气性预测模型。其次,选取了34组精纺毛织物样本,其中27组作为训练样本,7组作为测试样本,通过提出的模型对精纺毛织物的透气性进行实验验证。结果表明:在参数C=1 325.525 8和σ=0.102 8的条件下,对精纺毛织物透气性预测结果的平均误差小于4%,得到较好预测结果。与现有BP神经网络预测模型相比,其预测精度提高了3%,进一步说明构建的模型有利于快速、高效地预测精纺毛织物材料透气性。 To quickly and efficiently predict the air permeability of the worsted fabrics,the relationship between the worsted fabrics′parameters and the air permeability was deeply analyzed.After compared and analyzed the existing forecasting methods,and took use of the advantages of fast training and less parameter selection with SVM,a regression model of worsted fabrics′air permeability based on support vector machine was presented in this paper,and the relationship between the 34 kinds of worsted fabrics′parameters and the air permeability was analyzed.In the 34 groups of samples,27 groups were randomly selected as training sets,and 7 groups were used as test sets.Under the condition of C=1 325.525 8 andσ=0.102 8,the experiment achieved good results,and the average prediction accuracy was as low as 4%.Compared with the BP regression model,the SVM model reduced the average experimental error by 3%.This paper demonstrated that the SVM model yields more accurate prediction of worsted fabrics′air permeability than the BP model.
作者 邵景峰 王希尧 SHAO Jingfeng;WANG Xiyao(School of Management,Xi′an Polytechnic University,Xi′an,Shaanxi 710048,China)
出处 《毛纺科技》 CAS 北大核心 2019年第8期66-72,共7页 Wool Textile Journal
基金 陕西省重点研发计划项目(2017GY-39) 中国纺织工业联合会应用基础研究项目(J201508),中国纺织工业联合会科技指导性项目计划(2016076) 陕西省教育厅服务地方专项计划项目(16JF009) 西安市科技计划项目(2017074CG/RC037(XAGC005))
关键词 预测 透气性 精纺毛织物 支持向量机 prediction air permeability worsted fabrics support vector machine
  • 相关文献

参考文献10

二级参考文献101

共引文献402

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部