期刊文献+

基于BP神经网络的机器人波动摩擦力矩修正方法 被引量:7

Wave friction correction method for a robot based on BP neural network
原文传递
导出
摘要 针对机器人谐波减速器关节在转动过程中存在的波动摩擦力矩,提出一种基于傅里叶级数函数和BP神经网络的建模方法,并完善机器人的动力学模型,修正了因波动摩擦力矩带来的关节力矩计算误差.通过研究谐波减速器关节的波动摩擦力矩在不同影响因素下的变化特性,采用傅里叶级数与BP神经网络结合的方法对波动摩擦力矩进行建模.通过添加傅里叶级数函数作为BP神经网络的辅助输入,克服了力矩误差曲线因存在高频周期性波动而难以拟合的困难.在离线环境下训练神经网络,完成对关节波动摩擦力矩的建模,进而完善机器人的动力学模型和修正关节中存在的波动摩擦力矩.验证实验表明,使用完善后的动力学模型可以有效计算谐波减速器关节的波动摩擦力矩,并使修正后的力矩误差维持在[-0.5,0.5]N·m的范围之内,方差为0.1659 N^2·m^2,是修正前的24.23%. For sensorless force control of a robot such as by drag-teaching and collision detection,the control accuracy depends on the accuracy of the robot dynamics model.The error of the robot dynamics model comes from two aspects,modeling and identification errors and from unmodeled dynamics.Among the unmodeled dynamics,one of the important sources of unmodeled dynamic is the friction inside the robot reducer.When the reducer rotates,there is mutual extrusion and friction between the internal components of the reducer.This kind of friction will change as the gear meshing state transforms,resulting in the phenomenon of wave friction torque.A remarkable feature of wave friction torque is that it has a periodic relationship with the joint location and it is often modeled by the Fourier series function.Wave friction torque is obvious when the rotational speed of the joint is low and decreases with the increase in rotational speed.In order to improve the accuracy of the robot dynamics model,the wave friction torque needs to be modeled and eliminated.Aiming at the wave friction of the robot harmonic joint during the rotation process,a modeling method based on a Fourier series function and BP neural network was proposed,the dynamic model of the robot was optimized,and the calculation error of the joint torque caused by the wave friction was corrected.By studying the variation characteristics of the wave friction of the harmonic reducer joint under different influencing factors,the combination of the Fourier series and BP neural network was used to model the wave friction.By adding the Fourier series function as the auxiliary input of the BP neural network,the difficulty of fitting the torque error curve due to the presence of high frequency periodic fluctuations was overcome.The neural network was trained in the off-line environment to complete the modeling of the wave friction,and then to improve the dynamic model of the robot and correct the wave friction.The experimental results show that the improved dynamic model can effe
作者 张铁 洪景东 李秋奋 刘晓刚 ZHANG Tie;HONG Jing-dong;LI Qiu-fen;LIU Xiao-gang(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510641,China;Guangxi Key Laboratory of Robotics and Welding,Guilin University of Aerospace Technology,Guilin 541004,China)
出处 《工程科学学报》 EI CSCD 北大核心 2019年第8期1085-1091,共7页 Chinese Journal of Engineering
基金 国家科技重大专项资助项目(2015ZX04005006) 广东省科技重大专项资助项目(2014B090921004,2014B090920002) 中山市科技重大资助项目(2016F2FC0006) 广西高校机器人与焊接重点实验室课题基金资助项目(JQR2015KF02)
关键词 机器人动力学 关节波动摩擦力矩 BP神经网络 傅里叶级数函数 误差修正 robot dynamics joint wave friction torque BP neural network Fourier series function error correction
  • 相关文献

参考文献6

二级参考文献45

  • 1吴正茂,罗健.利用BP神经网络实现函数逼近[J].长江工程职业技术学院学报,2005,22(2):50-52. 被引量:5
  • 2朱洪涛,李大勇,王志勇,熊瑞文.轨检仪抑制轨缝干扰信息的数字滤波法[J].微计算机信息,2006(06S):182-183. 被引量:6
  • 3王慧,刘希玉.基于最具影响粒子群优化的BP神经网络训练[J].计算机工程与应用,2007,43(18):69-71. 被引量:6
  • 4BROGARDH T. Robot control overview: an industrial perspective [J]. Modeling Identification and Control, 2009, 30(3): 167-180. 被引量:1
  • 5KOSTIC D, DE JAGER B, STEINBUCH M, et al. Modeling and identification for high performance robot control: an RRR-robotic arm case study [J]. IEEE Transactions on Control Systems Technology, 2004, 12 (6) : 904 - 919. 被引量:1
  • 6BONA B, INDRI M, SMALDONE N. Rapid prototy- ping of a model-based control with friction compensation for a direct-drive robot[J]. IEEE-ASME Transactions on Meehatronies, 2006, 11(5): 576-584. 被引量:1
  • 7QIN Z K, BARON L, BIRGLEN L. A new approach to the dynamic parameter identification of robot manipula- tors [J]. Robotiea, 2010, 28:539-547. 被引量:1
  • 8BENIMELI F, MATA V, VALERO F. A comparison between direct and indirect dynamic parameter identifi- cation methods in industrial robots [J]. Robotiea, 2006, 24:579 - 590. 被引量:1
  • 9ATKESON C G, AN C H, HOLLERBACH J M. Esti- mation of inertial parameters of manipulator loads and links [J]. International Journal of Robotics Research, 1986, 5(3): 101-119. 被引量:1
  • 10ARMSTRONG B. On finding exciting trajectories for i- dentification experiments involving systems with nonlin- ear dynamics[J]. International Journal of Robotics Re- search, 1989, 8(6) : 28 - 48. 被引量:1

共引文献60

同被引文献78

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部