期刊文献+

基于卷积神经网络的双行车牌分割算法 被引量:13

Double-Row License Plate Segmentation with Convolutional Neural Networks
下载PDF
导出
摘要 随着智能化交通的迅速发展,自动车牌识别技术不断提高.现有大多数车牌识别技术能较好识别单行车牌字符信息,但双行车牌识别准确率较低且支持中文双行车牌的识别算法更少.为了有效地将原本仅支持单行车牌识别的算法扩展到双行车牌识别,提出一种基于卷积神经网络(CNN)的双行车牌分割算法,首先利用CNN提取车牌图像特征;然后利用特征训练多标签分类模型,将双行车牌分割为2个单行车牌.文中还构建了一个包含20多万幅中国车牌图像的数据集.基于此数据集的实验结果表明,文中算法对双行车牌自动分割准确率较高,有效地提高了双行车牌识别准确率. With the fast development of intelligent traffic,the license plate recognition technology progressively improves.Most of existing license plate recognition techniques can well recognize character information for singlerow license plates but the recognition accuracies for double-row license plates are not ideal and even less algorithms support Chinese characters.This paper introduces a doublerow license plate segmentation method with CNN,enabling efficient double-row license plate recognition for originally single-row recognition algorithms.First,this method trains a multi-label classification model with the image features extracted using CNN.Then,we use the model to automatically segment a double-row license plate into two single-row license plates.In addition,we have constructed a training and validation dataset containing more than 200 000 Chinese license plate images.The experimental results show that the proposed method has a higher accuracy in automatic segmentation of double-row license plate,thus effectively improving the accuracy of double-row license plate recognition.
作者 赵汉理 刘俊如 姜磊 沈建冰 胡明晓 Zhao Hanli;Liu Junru;Jiang Lei;Shen Jianbing;Hu Mingxiao(Intelligent Information Systems Institute,Wenzhou University,Wenzhou 325035;School of Computer Science&Technology,Beijing University of Technology,Beijing 100081)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第8期1320-1329,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 浙江省自然科学基金(LY14F020032) 浙江大学CAD&CG国家重点实验室开放课题(A1805) 温州大学研究生创新基金(18-26)
关键词 车牌分割 车牌识别 卷积神经网络 多任务学习 license plate segmentation license plate recognition convolutional neural networks multi-task learning
  • 相关文献

参考文献3

二级参考文献17

  • 1Lu Y I.Machine printed character segmentation-An overview[J].Pattern Recognition,1995,28(1):67~80 被引量:1
  • 2Casey R G,Lecolinet E.A survey of methods and strategies in character segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(7):690~706 被引量:1
  • 3Khan N A,de la Haye R J,Hegt H A.A license plate recognition system[A].In:Proceedings of SPIE,San Diego,1998,3460:14~24 被引量:1
  • 4Hegt H A,de la Haye Ron J,Khan N A.A high performance license plate recognition system[A].In:Proceedings of the IEEE International Conference on Systems,Man,and Cybernetics,San Diego,1998.4357~4362 被引量:1
  • 5Kim K K,Kim K I,Kim J B,et al.Learning-based approach for license plate recognition[A].In:Proceedings of the IEEE International Workshop on Neural Networks for Signal Processing,Sydney,2000.614~623 被引量:1
  • 6Neubauer C,Tyan J K,Goganovic L.License plate recognition with an intelligent camera[A].In:Proceedings of SPIE,Boston,1999,3838:29~38 被引量:1
  • 7Tyan J K,Neubauer C,Goganovic L.A character segmentation algorithm for recognition of vehicle license plate[A].In:proceedings of SPIE,Boston,1999,3838:12~21 被引量:1
  • 8Shridhar M,Waltz F M,Miller J W V,et al.License plate recognition using SKIPSM[A].In:proceedings of SPIE,Boston,2001,4189:72~79 被引量:1
  • 9Wen C Y,Yu C C,Hun Z D.A 3-D transformation to improve the Legibility of license plate numbers[J].Journal of Forensic Sciences.2002,47(3):578~585 被引量:1
  • 10Comelli Paolo,Ferragina Paolo,Granieri Mario Notturno,et al.Optical recognition of motor vehicle license plates[J].IEEE Transactions on Vehicular Technology,1995,44(4):790~799 被引量:1

共引文献61

同被引文献140

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部