期刊文献+

一类安全椭圆曲线的选取及其标量乘法的快速计算 被引量:6

A Selection of the Secure Elliptic Curve and Fast Calculation of Scalar Multiplication
下载PDF
导出
摘要 安全椭圆曲线的选取和标量乘法的快速计算是有效实现椭圆曲线密码体制的两个主要问题 .本文将二者结合起来考虑给出了一类适合普通PC机实现的安全椭圆曲线 ,并详细给出了选取这类曲线的具体步骤和基于“大步 小步法”思想构造了一种新的计算这类曲线上标量乘法的快速算法 .这类曲线不仅选取容易而且利用本文所提出方法计算其标量乘法时能使所需椭圆曲线运算次数大大减少 .此外 ,选用这类曲线后基域中元素不再需要专门的表示方法 ,各种运算能非常快地得到实现 。 The selection of secure elliptic curves and the scalar multiplications of elliptic curves are two important problems in the practice of efficiently implementing an elliptic curve cryptosystems.In this paper,we study those two problems jointly,give a class of secure elliptic curves mainly based on the computer words,describe a detailed process of how to selecting those curves,and present a new method,which is based on the idea of 'baby step giant step',of computing the scalar multiplication concerning those curves.With the new method,the amount of scalar multiplications based on those curves can be reduced greatly. Besides,when those curves are used,special representation method for the elements in the base field is no longer needed,and all the arithmetic in the field can be quickly accomplished.
出处 《电子学报》 EI CAS CSCD 北大核心 2002年第11期1654-1657,共4页 Acta Electronica Sinica
基金 中国博士后科学基金 (No .0 2 32 0 2 0 0 1 ) 国家 863项目 (No .2 0 0 2AA1 4 1 0 4 0 )
关键词 快速计算 椭圆曲线 密码 安全 标量乘法 Frobenius展式 信息安全 elliptic curve cryptosystem secure elliptic curves scalar multiplication Frobenius expansions
  • 相关文献

参考文献8

  • 1[1]I Blake,G Seroussi,N Smart.Elliptic Curves in Cryptography[M].Cambridge,United Kingdom:Cambridge University Press,1999.2-10. 被引量:1
  • 2[2]W Meier,O Staffelbach.Efficient Multiplication on Certain Nonsupersingular Elliptic Curves[A].Advances in Cryptology-crypto'92,LNCS 740,Springer-Verlag[C].Berlin.1992,333-344. 被引量:1
  • 3[3]N Smart.Elliptic curve cryptosystems over small fields of odd characteristic[J].Journal of Cryptology,1999,12:141-151. 被引量:1
  • 4[4]D Bailey,C Paar.Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms[A].Advances in Cryptology-Crypto'98,LNCS 1462,Springer-Verlag[C].Berlin:1998.472-485. 被引量:1
  • 5[5]J Silverman.The Arithmetic of Elliptic Curves[M].New York: GTM 106,Springer-Verlag,1986.45-63. 被引量:1
  • 6[6]Guoqiang Bai,Yupu HU,Guozhen Xiao.Method of improving an elliptic curve cryptosystem over the ring zn[J].Chinese Journal of Electronics.2000,19(1):89-91. 被引量:1
  • 7[7]ANSI-X9.63-1998,Public Key Cryptography for Financial Service Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography[S]. 被引量:1
  • 8[8]J Solinas.Improved algorithm for arithmetic on anomalous binary curves[R].Canada: CACR of University of Waterloo,2000. 被引量:1

同被引文献40

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部