期刊文献+

基于失配补偿Smith-RBF神经网络的主蒸汽压力控制技术 被引量:13

Main steam pressure control technique based on mismatch compensation Smith predictor and RBF neural network
下载PDF
导出
摘要 针对燃气发电锅炉主蒸汽压力控制系统对象的大滞后、不确定性和煤气扰动大的特点,设计了一种基于失配补偿Smith预估及RBF神经网络的控制方案。利用RBF神经网络的在线学习能力整定常规PID的参数,并通过失配补偿Smith预估控制器对系统中存在的纯滞后进行补偿,有效解决了火力发电锅炉主蒸汽压力对象动态特性模型失配及纯滞后的问题。通过仿真研究及实际应用表明:该控制方法对于火力发电锅炉主蒸汽压力控制具有很好的稳定性和抗干扰能力。 To solve the problems of large lag,uncertainty and gas disturbance of main steam pressure control system object of gas-fired power boiler,a control scheme based on mismatch compensation Smith prediction and RBF neural network is designed.The RBF neural network’s online learning ability is used to adjust the parameters of the conventional PID,and the mismatch compensation Smith prediction controller to compensate the pure hysteresis in the system.The improved algorithm effectively solves the problem of mismatch of dynamic characteristic model and pure lag of main steam pressure object in thermal power boiler.The simulation research and practical application show that the control method has good stability and anti-interference ability for the main steam pressure control of thermal power boilers.
作者 高锦 章家岩 冯旭刚 姚凤麒 GAO Jin;ZHANG Jiayan;FENG Xugang;YAO Fengqi(School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 243002,Anhui,P.R.China)
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第7期105-113,共9页 Journal of Chongqing University
基金 安徽省重点研究与开发计划项目(1804a09020094) 安徽省高校自然科学研究重点项目(KJ2018A0054,KJ2018A0060)~~
关键词 锅炉 主蒸汽压力 神经网络 失配补偿Smith预估 boiler main steam pressure neural network mismatch compensation Smith prediction
  • 相关文献

参考文献9

二级参考文献58

共引文献78

同被引文献103

引证文献13

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部