期刊文献+

基于邻域维护准则的特征选择算法优化研究 被引量:4

Research on optimization of feature selection algorithm based on neighborhood preservation criterion
下载PDF
导出
摘要 应用特征选择处理多标签数据分类时"维度灾难"问题已成为重要研究方向,因此提出一种基于邻域维护准则的特征选择算法(NPFS,feature selection algorithm based on neighborhood preservation criterion)。通过近似基于特征子空间和基于标签空间的2个相似度矩阵来构建相似性维护表达式,再通过线性近似扩展相似性维护公式得到邻域关系维护公式,并计算出邻域关系维护得分(NRPS,neighborhood relationship preserving score)来评估特征子集的重要性,结合贪婪方法设计具有NRPS的多标签特征选择算法(NPFS)。仿真结果表明,对比MMIFS算法和MDMR算法,所提出的算法在平均准确率、覆盖率、汉明损失、1-错误率、排名损失5个性能指标上均有改善。 The application of feature selection to deal with'Dimensional Disaster'in multi-label data classification has become an important research direction,we proposed a feature selection algorithm based on neighborhood preservation criterion(NPFS).A similarity preservation expression was constructed by approximating two similarity matrices based on feature subspace and label space.Then,the similarity preservation formulation was extended by the linear approximation to obtain a formulation of the neighborhood relationship preservation,and the importance of the feature subset was evaluated by calculating the neighborhood relationship preserving score(NRPS).A multi-label feature selection algorithm with NRPS was designed in combination with the greedy method(NPFS).The simulation results show that the metrics of average precision,coverage,hamming loss,one-error,ranking loss obtained by the proposed algorithm have been improved compared with those obtained by MMIFS algorithm and MDMR algorithm.
作者 刘云 肖雪 LIU Yun;XIAO Xue(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,P.R.China)
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第3期58-64,共7页 Journal of Chongqing University
基金 国家自然科学基金资助项目(61262040)~~
关键词 特征选择 多标签分类 邻域关系维护得分 贪婪算法 feature selection multi-label classification neighborhood relationship preserving score greedy algorithm
  • 相关文献

参考文献2

二级参考文献23

  • 1Donoho D L.Compressed sensingIEEE Transactions on In- formation Theory,2006. 被引量:12
  • 2Grigorios Tsoumakas,Ioannis Katakis,Ioannis Vlahavas.Random k-Labelsets for Multilabel Classification. IEEE Transactions on Knowledge and Data Engineering . 2011 被引量:2
  • 3Tsoumakas, Grigorios,Spyromitros-Xioufis, Eleftherios,Vilcek, Jozef,Vlahavas, Ioannis.MULAN: A Java library for multi-label learning. Journal of Machine Learning Research . 2011 被引量:2
  • 4Jesse Read,Bernhard Pfahringer,Geoff Holmes,Eibe Frank.Classifier chains for multi-label classification[J]. Machine Learning . 2011 (3) 被引量:2
  • 5Jianhua Xu.Fast multi-label core vector machine[J]. Pattern Recognition . 2013 (3) 被引量:1
  • 6Jianhua Xu.An extended one-versus-rest support vector machine for multi-label classification[J]. Neurocomputing . 2011 (17) 被引量:1
  • 7Yin Zhang,Zhi-Hua Zhou.Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data (TKDD) . 2010 (3) 被引量:1
  • 8Lishan Qiao,Songcan Chen,Xiaoyang Tan.Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition . 2009 (1) 被引量:3
  • 9Min-Ling Zhang,José M. Pe?a,Victor Robles.Feature selection for multi-label naive Bayes classification[J]. Information Sciences . 2009 (19) 被引量:1
  • 10Johannes Fürnkranz,Eyke Hüllermeier,Eneldo Loza Mencía,Klaus Brinker.Multilabel classification via calibrated label ranking[J]. Machine Learning . 2008 (2) 被引量:1

共引文献25

同被引文献21

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部