期刊文献+

THE LINEAR ARBORICITY OF COMPOSITION GRAPHS

THE LINEAR ARBORICITY OF COMPOSITION GRAPHS
原文传递
导出
摘要 The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama, Exoo and Harary conjectured that la(G) = [△(G)+1/2] for any regular graph G. In this paper, we prove the conjecture for some composition graphs, in particular, for complete multipartite graphs.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2002年第4期372-375,共4页 系统科学与复杂性学报(英文版)
基金 This work is partially supported by National Natural Science foundation of China Doctoral foundation of the Education Committee of China.
关键词 GRAPH composition of graphs linear arboricity complete multipartite graph. 森林 可分解图 完全多部图 Akiyama-Exoo-Harary猜想 有向图 简单图 无向图
  • 相关文献

参考文献11

  • 1F. Harary, Covering and packing in graphs I, Ann. IV. Y. Acad. Sci., 1970, 175: 198-205. 被引量:1
  • 2J. Akiyama, G, Exoo, and F. Harary, Covering and packing in graphs Ⅲ: Cyclic and acyclic invariants, Math. Slovaca, 1980, 30: 405-417. 被引量:1
  • 3J. Akiyama, G. Exoo, and F. Harary, Covering and packing in graphs Ⅳ: Linear arboricity, Networks, 1981, 11: 69-72. 被引量:1
  • 4H. Enomoto, and B. Peroche, The linear arboricity of some regular graphs, J. Graph Theory, 1984, 8: 309-324. 被引量:1
  • 5F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca, 1986, 36: 225-228. 被引量:1
  • 6Jianliang Wu, Some path decompositions of Halin graphs, J. Shandong Mining Institute, 1996, 15: 219-222. 被引量:1
  • 7Jianliang Wu, The linear arboricity of Series-Parallel graphs, Graphs and Combinatorics, 2000, 16: 367-372. 被引量:1
  • 8Jianliang Wu, On the linear arboricity of planar graphs, J. Graph Theory, 1999, 31: 129-134. 被引量:1
  • 9N. Alon, The linear arboricity of graphs, Israel J. Mathematics, 1988, 62: 311-325. 被引量:1
  • 10Z. Baranyai, and Gy. R. Szasz, Hamiltonian decomposition of Lexicographic product, J. Combin. Theory (B), 1981, 31: 253-261. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部