期刊文献+

氮掺杂石墨烯纳米结构的等离激元激发(英文) 被引量:2

Plasmon Excitation in Nitrogen- doped Graphene Nanostructures
下载PDF
导出
摘要 基于含时密度泛函理论,研究了氮掺杂石墨烯纳米结构的等离激元特性。吡啶型氮掺杂不影响石墨烯纳米结构的等离激元激发特性,而取代型氮掺杂主要基于石墨烯纳米结构对称性的改变和体系中电子密度的增加来影响石墨烯纳米结构的等离激元共振。相对于纯六角石墨烯纳米结构,在低能共振区,取代型氮掺杂六角石墨烯纳米结构的等离激元共振能量发生了红移。相对于纯矩形石墨烯纳米结构,在低能共振区,取代型氮掺杂矩形石墨烯纳米结构沿扶手椅型边界方向激发时,其等离激元共振能量发生了蓝移;沿Z字型边界激发时,其主要的等离激元共振模式受掺杂氮的影响较小。 Plasmon characteristics in nitrogen-doped graphene nanostructures are studied by time-dependent density functional theory. The pyridinic-nitrogen doping does not affect plasmon characteristics of graphene nanostructures,while the substitutional-nitrogen doping affects plasmon resonances of graphene nanostructures due to two main competing factors: The reduced symmetry of graphene nanostructures and the increase of the electron densities. After doped with substitutional-nitrogen,low-energy spectra of hexagonal graphene nanostructures are red-shifted. For rectangular graphene nanostructures,along the armchair-edge direction,the main low-energy spectra always show blue-shifts.However,along the zigzag-edge direction,the substitutional-nitrogen doping has little effect on the main lower-energy collective excitation.
出处 《发光学报》 EI CAS CSCD 北大核心 2014年第11期1297-1305,共9页 Chinese Journal of Luminescence
基金 国家自然科学基金(11464023,11474207) 贵州省科技厅基金(黔科合J字[2012]2299号,黔科合J字LKK[2013]19号)资助项目
关键词 等离激元 氮掺杂石墨烯纳米结构 含时密度泛函理论 plasmon nitrogen-doped graphene nanostructures time-dependent density functional theory
  • 相关文献

参考文献4

二级参考文献45

  • 1顾本源.表面等离子体亚波长光学原理和新颖效应[J].物理,2007,36(4):280-287. 被引量:40
  • 2Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry [J]. Phys. Rev. Lett. , 1998, 80(24) :5243-5246. 被引量:1
  • 3Klaiman S, Gunther U, Moiseyev N. Visualization of branch points in PT-symmetric waveguides [ J ]. Phys. Rev. Lett. , 2008, 101(8) :080402-1-4. 被引量:1
  • 4Ruter C E, Makris K G, E1-Ganainy R, et al. Observation of parity-time symmetry in optics [J]. Nat. Phys. , 2010, 6 (3) :192-195. 被引量:1
  • 5Guo A, Salamo G J, Duchesne D, et al. Observation of PT-symmetry breaking in complex optical potentials [ J ]. Phys. Rev. Lett. , 2009, 103(9) :093902-1-4. 被引量:1
  • 6Longhi S. Bloch oscillations in complex crystals with PT symmetry [J]. Phys. Rev. Lett. , 2009, 103(12) :123601-1-4. 被引量:1
  • 7Chong Y D, Ge L, Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems [ J ]. Phys. Rev. Lett. , 201l, 106(9) :093902-1-4. 被引量:1
  • 8Mostafazadeh A. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies [J]. Phys. Rev. Lett., 2009, 102(22) :220402-1-4. 被引量:1
  • 9Feng L, Ayache M, Huang J, et al. Nonreciprocal light propagation in a silicon photonic circuit [ J ]. Science, 2011,333 (6043) :729-733. 被引量:1
  • 10Miroshniehenko A E, Malomed B A, Kivshar Y S. Nonlinearly Fir-symmetric systems: Spontaneous symmetry breaking and transmission resonances [ J ]. Phys. Rev. A, 2011, 84 ( 1 ) :012 123-1-4. 被引量:1

共引文献19

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部