期刊文献+

表面键合对硅(111)量子面电子结构的影响

Influence of Surface Bond on Electronic Structure of Si( 111) Quantum Surface
下载PDF
导出
摘要 将纳米硅薄膜看成理想的一维限制的量子面结构,通过第一性原理计算研究了不同厚度的硅(111)量子面的能带结构及态密度。随着量子面厚度的变化,在Si—H键钝化较好的量子面结构上,其带隙宽度变化主要遵循量子限制效应规律。当在表面掺杂时,模拟计算表面含Si—N键的硅(111)量子面的结果表明:在一定厚度范围内,带隙宽度主要由量子限制效应决定;超过这个厚度,带隙宽度同时受量子限制效应和表面键合结构的影响。保持量子面厚度不变,表面掺杂浓度越大则带隙变窄效应越明显。同样,模拟计算含Si—Yb键的硅(111)量子面的结果也有同样的效应。几乎所有的模拟计算结果都显示:量子面的能带结构均呈现出准直接带隙特征。 We regard the nanocrystalline silicon films as an ideal one-dimensional quantum limiting surface structure, and study the band structure and density of states of the different thickness silicon (111) quantum surface by the first-principles calculation. As the change of the thickness of the quantum surface well passivated by Si-H bond, the band gap mainly follow the quantum confine-ment effect. When the silicon (111) quantum surface contains Si-N bond, the simulated results show that the band gap is mainly determined by the quantum confinement effect in a certain range of thickness, but beyond the thickness, the band gap is determined by both the quantum confinement effect and bond structure. While maintaining a constant thickness, the greater doping concentration of the quantum surface, the more obvious the band gap narrowing effect. Similarly, the simulated result of silicon (111) quantum surface which contain Si-Yb has the same effect. It is worth noting that almost all of the simulated results show that the band structures of the quantum surface show quasi-direct band gap characteristics.
出处 《发光学报》 EI CAS CSCD 北大核心 2014年第9期1082-1086,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金(11264007)资助项目
关键词 硅量子面 表面键合 量子限制效应 带隙变窄效应 silicon quantum surface surface bond quantum confinement effect band gap narrowing effect
  • 相关文献

参考文献3

二级参考文献44

  • 1何开华,余飞,姬广富,颜其礼,郑澍奎.第一性原理研究ZnS掺V的光学性质和电子结构[J].高压物理学报,2006,20(1):56-60. 被引量:20
  • 2Biernacki S W, Roussos G, Schulz H J. The luminescence of V^2+ ( d^3 ) and V^3+ ( d^2 ) ions in ZnS and an advanced interpretation of their excitation levels [J]. J. Phys. C: Solid State Phys. , 1988, 21(33) :5615-5630. 被引量:1
  • 3Pohl U W, Gumlich H E. Optical transitions of different Mn-ion pairs in ZnS [ J ]. Phys. Rev. B, 1989, 40 ( 2 ) : 1194-1201. 被引量:1
  • 4Langer D, Ibuki S. Zero-phonon line and phonon coupling in ZnS: Mn [J]. Phys. Rev. , 1964, 138(3A) :A809-A815. 被引量:1
  • 5Lee S, Song D, Kim D, Lee J, et al. Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS: Cu nanocrystals [ J]. Mater. Lett. , 2004, 58(3-4) :342-346. 被引量:1
  • 6Bevilacqua G, Martinell L, Vogel E E. Jahn-Teller effect in the emission and absorption spectra of ZnS: Cr^2+ and ZnSe: Cr^2+ [J]. Phys. Rev. B, 2004, 70(7):075206-1-7. 被引量:1
  • 7Hu H, Zhang W H. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles [ J ]. Optical Materials, 2006, 28(5) :536-550. 被引量:1
  • 8Xu S J, Chua S J, Liu B, et al. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment [J]. Appl. Phys. Lett., 1998, 73(4) :478-480. 被引量:1
  • 9Li G B, Wang L W. First principles calculations of ZnS: Te energy levels [J]. Phys. Rev. B, 2003, 67(20) :205319-1- 11. 被引量:1
  • 10Sato K, Katayama-Yoshida H. First principles materials design for semiconductor spintronics [ J ]. Semicond. Sci. Technol. , 2002, 17(4) :367-376. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部