期刊文献+

基于位的超光谱遥感图像无损压缩算法 被引量:1

Research on algorithm of hyperspectral image lossless compression
原文传递
导出
摘要 图像压缩是超光谱遥感技术中急需解决的一个问题。分析了像素的高位与低位的相关性 ,提出了对字位进行运算的无损压缩算法。结果表明 ,本算法的压缩比与目前一些无损压缩比基本一致 (1 6~ 2 4) ,但这种算法运算简单 ,在去相关过程中 ,每位只进行一次运算 ,而且均为二进制运算 ,易于硬件电路的实现和进行实时压缩。 Hyperspectral image compression is the key technology in remote sensing. The correlation of the pixel bits is analyzed. A new algorithm of compression is proposed. It has less computational complexity. The algorithm can be realized by hardware easily.
出处 《光学技术》 CAS CSCD 2002年第6期549-550,共2页 Optical Technique
关键词 遥感 超光谱图像 图像压缩 算法 无损压缩 按位压缩 Hyperspectral image image compression algorithm lossless compression
  • 相关文献

参考文献1

二级参考文献17

  • 1Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54. 被引量:1
  • 2Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191. 被引量:1
  • 3Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942. 被引量:1
  • 4Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99'), Kobe, Japan,1999:326-329. 被引量:1
  • 5Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205 被引量:1
  • 6Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785. 被引量:1
  • 7Chang Chein-I, Zhao Xiao Li, Althouse M L G et al Least squares subspaee projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. On Geoscience and Remote Sensing, 1998,36(3):898-912. 被引量:1
  • 8JimenezL O, Motell A M, Creus S. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, Majority Voting, and Neural Networks. IEEE Trans. On Geoscienee and Remote Sensing, 1999,37(3) : 1360-1366. 被引量:1
  • 9Benediktsson J A, Kanellopulos I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(3):1367-1377. 被引量:1
  • 10Hoffman R N, Johnson D W. Application of EOF's to multispectral imagery : Data compression and noise detection for AVIRIS. IEEE Trans. On Geoscience and Remote Sewing, 1994.32(1) :25-34. 被引量:1

共引文献10

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部