摘要
本文是文献[1]工作的继续。主要讨论了同时不变子空间的三种特征:即时域特征、频域特征和几何特征。特别对包含在给定子空间H中的最大同时不变子空间给出了新的描述。利用这些结果,文中首先给出了一类离散扰动系统鲁棒干扰解耦问题的充要条件,然后推广到了连续扰动系统,获得了一个Kharitonov型的结果。
This paper,further aspects of Ref.[1],is mainly devoted to the study of three kinds of characterizations of the simultaneous invariant subspace,i.e.,time domain characterization,frequency domain characterization and geometric characterization.In particular,a new description of the largest simultaneous invariant subspace contained in a given subspace H is obtained.Based on these results a necessary and sufficient condition for robust disturbance decoupling of discrete perturbation systems is first given.Then,by extending the discussion to the continuous perturbation case,a Kharitonov-like result is derived.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
1992年第2期1-5,共5页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金
航空科学基金
关键词
鲁棒控制
干扰解耦
不变子空间
robust control,disturbance decoupling,simultaneous invariant subspace,system synthesis.