摘要
Identity-Based Proxy Re-Encryption (IB-PRE) allows a semi-trusted proxy to convert the ciphertext encrypted under Alice’s identity into Bob’s ciphertext of the same message without leaking plaintext. Lattice-based cryptography enjoys potential resistance to quantum analysis and low computational complexity. A multi-hop and unidirectional IB-PRE from lattices is presented. We split the functions of decryption and ciphertext transformation separately, and design the double private keys mechanism, where two keys are generated for each user, one key is used to decrypt the ciphertext by Pre-Image Sampling technique, and the other is used to generate the re-encryption key by Bonsai Trees technique. The generation of the re-encryption key is non-interactive and collusion resistant. Moreover, its IND-sID-CPA security over the decisional Learning With Errors (LWE) assumption under the standard model is proved. Compared with some previous IBPRE schemes from Bilinear Pairings, the format of transformed ciphertext in our scheme remains unchanged, furthermore, it can also resist quantum analysis. Compared with some existing IB-PRE schemes from lattices with similar properties, the space of the message in our scheme is a vector of length l and the encryption process remains a lower encryption blowup factor. At last, a proof-of-concept implementation is provided.
Identity-Based Proxy Re-Encryption(IB-PRE) allows a semi-trusted proxy to convert the ciphertext encrypted under Alice’s identity into Bob’s ciphertext of the same message without leaking plaintext. Lattice-based cryptography enjoys potential resistance to quantum analysis and low computational complexity. A multi-hop and unidirectional IB-PRE from lattices is presented. We split the functions of decryption and ciphertext transformation separately, and design the double private keys mechanism, where two keys are generated for each user, one key is used to decrypt the ciphertext by Pre-Image Sampling technique, and the other is used to generate the re-encryption key by Bonsai Trees technique. The generation of the re-encryption key is non-interactive and collusion resistant. Moreover, its IND-s ID-CPA security over the decisional Learning With Errors(LWE) assumption under the standard model is proved. Compared with some previous IBPRE schemes from Bilinear Pairings, the format of transformed ciphertext in our scheme remains unchanged, furthermore, it can also resist quantum analysis. Compared with some existing IB-PRE schemes from lattices with similar properties, the space of the message in our scheme is a vector of length l and the encryption process remains a lower encryption blowup factor. At last, a proof-of-concept implementation is provided.
基金
supported by the National Natural Science Foundation of China under grant No.(U1636114, 61572521,61772550)
Natural Science of Shaanxi Province of China under grant No.2018JM6078
Innovative Research Team in Engineering University of PAP (KYTD201805)