期刊文献+

具有不完全营养转换和脉冲效应的单食饵多捕食者系统的复杂性分析(英文)

Complexity of one-prey multi-predator system with impulsive effect and incomplete trophic transfer
下载PDF
导出
摘要 提出了一类具有不完全营养转换和脉冲效应的单食饵多捕食者系统.在该系统的Ivlev型功能反应项中,选取了不同的捕食者营养吸收率与消耗食饵的转化率.在周期性投放捕食者的脉冲效应下,分析了系统的灭绝和持续生存,并利用Floquet乘子理论和比较定理,给出了食饵根除周期解渐近稳定与系统持续生存的条件.最后,通过数值模拟验证了所得结论. A new one-prey multi-predator system with impulsive effect and incomplete trophic transfer was proposed.This system used a different rate of trophic absorption of predators from the rate of the conversion of consumed prey to predator in Ivlev-type functional responses.The extinction and permanence of the system with impulsive perturbation on the predators at fixed moments was investigated.And the conditions for asymptotically stable and permanence of the system was given by using Floquet theory and comparison theorem.Finally,numerical simulations demonstrated the obtained conclusions.
作者 程娴 闫萍 刘利平 张长勤 CHENG Xian;YAN Ping;LIU Liping;ZHANG Changqin(School of Science,Anhui Agricultural University,Hefei 230026,China;Institute of Mathematical Sciences,Lakehead University,Thunder Bay P7B 5E1,Canada)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第3期182-194,共13页 JUSTC
基金 Supported by the NNSF of China(11201002) Natural Science Research Projects in Anhui Universities(KJ2019A0215)
关键词 不完全营养转换 Ivlev型 脉冲效应 灭绝 持续生存 incomplete trophic transfer Ivlev-type impulsive effect extinction permanence
  • 相关文献

参考文献5

二级参考文献29

  • 1惠静,陈兰荪.脉冲效应下一个捕食食饵系统的灭绝与持续生存(英文)[J].应用数学,2005,18(1):1-7. 被引量:8
  • 2任庆军,窦霁虹.具有非单调功能反应和脉冲扰动的捕食系统的分析[J].纯粹数学与应用数学,2006,22(4):444-448. 被引量:5
  • 3Ruan Shigui. Absolute stability conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays[J]. Quar. Appl. Math., 2001, 59(1):159-173. 被引量:1
  • 4Bainov D. D. , Simeonov P.S.. System with impulsive effect: stability, theory and application[M].New York:John wiley and sons, 1989. 被引量:1
  • 5Gaines R. E. , Mawhin J. L.. Coincidence Degree and Nonlinear Differential equations[M]. Berlin:Springer-Verlay, 1977. 被引量:1
  • 6Yasuhisa Saito, Tadayuki Harau, Ma Wanbiao. Necessary and sufficient conditions for permanence of global stability and a Lotka-Volterra system with two delays[J]. J. Math. Anal. Appl. , 1999,236(2):534-556. 被引量:1
  • 7Kuang Y.. Differential equation with Application in population dynamic[M]. Boston: Academic press, 1993,50-180. 被引量:1
  • 8Lu Zhengyi, Wang Wendi. Global stability for two-species Lotka-Volterra systems with delay[J]. J.Math. Anal. Appl. 1997,208(1):277-280. 被引量:1
  • 9Song Xinyu, Chen Lansun. Harmless delays and global attractivity for nonautonomous predator-prey system with dispersion[J]. Comp. Math. Appl. , 2000, 39(1):33-42. 被引量:1
  • 10Zhang Xinan, Chen Lansun. The stage-structured predator-prey model and optimal harvesting policy [J]. Math. Bios., 2000,168(2):201-210. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部