期刊文献+

基于改进LSD和AP聚类的路径边缘识别策略 被引量:9

Path Edge Recognition Strategy Based on Improved LSD and AP Clustering
下载PDF
导出
摘要 起重机金属结构攀爬机器人的路径边缘识别策略分为3个步骤。①图像预处理,利用改进的过颜色算子进行灰度化;②使用基于支持向量机(SVM)最优分类线的方法确定梯度阈值,并增设主方向角约束,改进线段分割检测(LSD)算法,得到直线段检测图像;③对直线段进行特征提取,构建聚类数据集,基于数据集动态变化的特点,将基于先验信息的判别模型与近邻传播(AP)聚类算法相结合,改进AP聚类算法,对直线段进行聚类,筛选出构成路径边缘的直线段,并拟合得到最终的路径边缘线。实验结果表明,相较AP聚类和其他聚类算法,改进AP聚类算法的筛选准确率最高;基于改进LSD和AP聚类的路径边缘识别策略的识别成功率为96%,且满足精度和实时性要求。 The path edge recognition strategy of the crane metal structure climbing robot is divided into three steps. Firstly, image pre-processing which means using the improved over-color operator for grayscale. Secondly, the gradient threshold is determined by the method based on the optimal classification line of the support vector machine, in addition, main direction angle constraint is added to improve line segment detector(LSD) algorithm, and obtain the straight line detection image for clustering. Thirdly, the clustering data set is constructed by the feature extraction of straight line segments. Based on the dynamism of the data set feature of, the improved AP clustering algorithm is established by combining the prior information based discriminant model with the affinity propagation(AP) clustering algorithm to cluster the line segments and screen out the line segments constituting the edge of the path, and obtain the final path edge line by fitting. The experimental results show that compared with the traditional AP clustering and other clustering algorithms, the improved AP clustering algorithm has the highest screening accuracy for path edge lines. The recognition success rate of path edge recognition strategy based on improved LSD and AP clustering is 96% which meets the accuracy and real-time requirements.
作者 刘璧钺 赵章焰 LIU Bi-yue;ZHAO Zhang-yan(School of Logistics Engineering,Wuhan University of Technology,Wuhan Hubei 430063,China)
出处 《图学学报》 CSCD 北大核心 2019年第5期915-924,共10页 Journal of Graphics
基金 国家重点研发计划项目(2017YFC0805703,2016YFF0203100)
关键词 边缘识别 过颜色算子 LSD SVM 特征提取 AP聚类 edge recognition over-color operator LSD SVM feature extraction AP clustering
  • 相关文献

参考文献11

二级参考文献79

  • 1张海波,原魁,周庆瑞.基于路径识别的移动机器人视觉导航[J].中国图象图形学报(A辑),2004,9(7):853-857. 被引量:31
  • 2邓宝松,高宇,杨冰,吴玲达.一种新的直线特征提取和定位算法[J].计算机工程,2006,32(13):198-199. 被引量:6
  • 3王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:144
  • 4Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976. 被引量:1
  • 5Borile C, Labarre M, Franz S, Sola C, Refr@gier G. Using affinity propagation for identifying subspecies among clonal organisms: lessons from M. tuberculosis. BMC Bioinformat- ics, 2011, 12:224. 被引量:1
  • 6Bijral A S, Ratliff N, Srebro N. Semi-supervised learning with density based distances. [Online], available: http:// ttic.uchicago.edu / nati / Publications / SemiSupDBD.pdf, October 10, 2014. 被引量:1
  • 7Wagstaff K, Caxdie C. Clustering with instance-level con- straints. In: Proceedings of the 17th International Confer- ence on Machine Learning (ICML2000). Stanford: Morgan Kaufmann Publishers 2000. 1103-1110. 被引量:1
  • 8Givoni I E, Frey B J. Semi-supervised affinity propaga- tion with instance-level constraints. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS). Clearwater Beach, Florida, USA: JMLR WCPS, 2009. 161-168. 被引量:1
  • 9Wagstaff K, Cadrie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Pro- ceedings of the 18th International Conference on Machine Learning (ICML2001). Williamstown: Morgan Kaufmann Publishers, 2001. 577-584. 被引量:1
  • 10Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Transactions on Informa- tion Theory, 2001, 47(2): 498-519. 被引量:1

共引文献110

同被引文献71

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部