摘要
设B(H)是复Hilbert空间H上有界线性算子全体组成的集合.该文主要利用算子分块技巧给出闭值域算子A∈B(H)的非负{1,3}-逆,{1,4}-逆,{1,3,4}-逆存在的充要条件以及它们的一般形式.同时,该文也得到A的非负{1,3}-逆存在与非负{1,2,3}-逆存在是等价的,非负{1,4}-逆存在与非负{1,2,4}-逆存在是等价的.
Let B(H) be the set of all bounded linear operators on a complex Hilbert space H.Using the block operator technique,some necessary and suffcient conditions for the existence of nonnegative {1,3}-,{1,4}-,{1,3,4}-inverses for an operator A∈ B(H) with closed range is given in this paper,and these sets are completely descibed.Moreover,it is showed that the existence of nonnegative {1,3}-,{1,4}-inverse of an operator A is equivalent to existence of its nonnegative {1,2,3}-,{1,2,4}-inverse,respectively.
作者
宋显花
Song Xianhua(College of Mathematics and Statistics,Qinghai Normal University,Xining 810016)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第5期1018-1024,共7页
Acta Mathematica Scientia
基金
青海师范大学校级项目:线性算子的广义逆研究(2018zr004)~~