期刊文献+

基于改进遗传算法的研学旅行线路优化与实现 被引量:1

Optimization and Realization of Educational Tourism Path Based on Improved Genetic Algorithm
下载PDF
导出
摘要 研学旅行正处于大有可为的发展机遇期,合理的研学旅行线路可适当减少旅行者在时间和经济等方面一些不必要的开支。文章采用改进的遗传算法对研学旅行线路进行优化,实验结果表明,遗传操作策略有效可行。为了使优化后的线路更加实用与智能化,将遗传算法应用到Android平台,设计开发了研学旅行APP,测试结果表明:该APP实现正确、运行稳定。研究成果可为研学旅行线路优化提供一定的借鉴和参考。 Educational tourism has entered a promising period of development, and a reasonable educational tourism route can reduce the traveler s unnecessary expenses in time and money. This paper establishes an optimization modeling of educational tourism path based on improved genetic algorithm. The results show that genetic operation strategies are effective. In order to make the optimized path more practical and intelligent, the study has designed and developed an educational tourism application launched on the Android platform. The findings suggest that the operation of the whole system is very stable. The research is intended to provide reference for the optimization of educational tourism path.
作者 樊丹 史晋娜 许霞 FAN Dan;SHI Jinna;XU Xia(Sichuan Tourism University, Chengdu 610100, Sichuan, China)
机构地区 四川旅游学院
出处 《四川旅游学院学报》 2019年第6期36-40,共5页 Journal of Sichuan Tourism University
基金 2011计划“川藏旅游产业竞争力提升协同创新中心项目”,项目编号:17CZZX02 四川省旅游业青年专家2018年度研究课题,项目编号:SCTYETP2018L12
关键词 研学旅行 遗传算法 最短路径 ANDROID平台 educational tourism genetic algorithm shortest path Android platform
  • 相关文献

参考文献8

二级参考文献36

  • 1HUANG Lan , ZHOU Chunguang and WANG Kangping(College of Computer Science and Technology, Jilin University, Changchun 130012, China).Hybrid ant colony algorithm for traveling salesman problem[J].Progress in Natural Science:Materials International,2003,13(4):295-299. 被引量:15
  • 2杨孔雨,王秀峰.免疫记忆遗传算法及其完全收敛性研究[J].计算机工程与应用,2005,41(12):47-50. 被引量:14
  • 3Eberhart R, Kennedy J. A New Optimizer Using Particles Swarm Theory[C]. Proc Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Service Center, Piseataway.1995.39-43. 被引量:1
  • 4Xie X, Zhang W, Yang Z. Adaptive Particle Swarm Optimization on Individual Level[C]. International Conference on Signal Processing (ICSP 2002). Beijing: 2002. 1215-1218. 被引量:1
  • 5Parsopoulos K E, Vrahatis M N. Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization[J]. Natural Computing, 2002, 1(2-3): 235-306. 被引量:1
  • 6Ray T, Liew K M. A Swarm Metaphor for Multiobjective Design Optimization [J]. Engineering Optimization,2002, 34(2): 141-153. 被引量:1
  • 7Lin S, Kernighan B W. An Effective Heuristic Algorithm for the Traveling Salesman Problem[J]. Operations Res, 1973, 21: 498-516. 被引量:1
  • 8黄岚 王康平 周春光.Hybrid Ant Colony Algorithm for Traveling Salesman Problem (基于蚂蚁算法的混合方法求解旅行商问题).Journal of Jilin Unlversity(Science Edition)[吉林大学学报(理学版)],2002,40(4):369-373. 被引量:1
  • 9Vega-Rodriguez M A,Gutierrez-Gil R,Avila-Roman J M et al.Genetic algorithms using parallelism and FPGAs:the TSP as case study[J].Parallel Processing,ICPP 2005 Workshops,International Conference Workshops,2005:573~579 被引量:1
  • 10Xiong Shengwu,Li Chengjun.A distributed genetic algorithm to TSP.Intelligent Control and Automation,2002[C].In:Proceedings of the 4th World Congress on,2002;3:1827~1830 被引量:1

共引文献273

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部