期刊文献+

大数据环境下差分隐私保护技术及应用 被引量:22

Differential privacy protection technology and its application in big data environment
下载PDF
导出
摘要 大数据中的隐私保护问题是当前网络空间安全领域的一个研究热点,差分隐私保护作为严格且可证明的隐私保护定义,研究其在大数据环境下的应用现状能够为其后续的系统性应用等提供参考与指导。在系统分析差分隐私保护的相关概念与技术特性的基础上,通过对差分隐私保护技术在数据发布与分析、云计算与大数据计算、位置与轨迹服务及社交网络中的应用等进行综述,阐述了当前具有代表性的研究成果并分析了其存在的问题。研究表明,现有成果从差分隐私保护机理、噪声添加机制与位置、数据处理方式等方面对差分隐私保护应用进行了卓有成效的创新与探究,且相关成果在不同场景下实现了交叉应用。最后提出了差分隐私保护在大数据环境下进一步系统性应用还需要注意的四大问题。 The privacy protection in big data is a research hotspot in the field of cyberspace security.As a strict and provable definition of privacy protection,studying application status of differential privacy protection in big data environment can provide reference and guidance for its subsequent system applications.Based on the analysis of the related concepts and technical characteristics of differential privacy protection,the application of differential privacy protection technology was reviewed in data distribution and analysis,cloud computing and big data computing,location and trajectory services and social networks,which expounded the current representative research results and analyzed its existing problems.The research shows that the existing results have made effective innovation and exploration of differential privacy protection applications from the aspects of differential privacy protection mechanism,noise addition mechanism and location,and data processing methods,and the related results have been cross-applied in different scenarios.Finally,four major problems that need to be studied in the further systematic application of differential privacy protection in the big data environment are proposed.
作者 付钰 俞艺涵 吴晓平 FU Yu;YU Yihan;WU Xiaoping(Department of Information Security,Naval University of Engineering,Wuhan 430033,China)
出处 《通信学报》 EI CSCD 北大核心 2019年第10期157-168,共12页 Journal on Communications
基金 国家重点研发计划基金资助项目(No.SQ2018YFGX210002) 国家自然科学基金资助项目(No.2015CFC867)~~
关键词 差分隐私 隐私保护 大数据 数据发布 云计算 位置服务 社交网络 differential privacy privacy protection big data data publishing cloud computing location service social network
  • 相关文献

参考文献8

二级参考文献129

  • 1赵克勤.集对分析对不确定性的描述和处理[J].信息与控制,1995,24(3):162-166. 被引量:150
  • 2G. Ghinita, Y. Tao, and P. Kalnis, "On the anonymization of sparse high-dimensional data," in IEEE 24th International Conference on Data Engineering (ICDE), 2008, pp. 715- 724. 被引量:1
  • 3Y. Xu et al., "Anonymizing transaction databases for publication," in Proceedingsof the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, pp. 767-775. 被引量:1
  • 4L. Sweeney, "k-anonymity: A model for protecting privacy," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 05, pp. 557-570, 2002. 被引量:1
  • 5A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, "l-diversity: Privacy beyond k-anonymity," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, p. 3, 2007. 被引量:1
  • 6R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei, "Anonymizationbased attacks in privacy-preserving data publishing," ACM Transactions on Database Systems (TODS), vol. 34, no. 2, p. 8, 2009. 被引量:1
  • 7C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in private data analysis," in Theory of Cryptography. Springer, 2006, pp. 265-284. 被引量:1
  • 8M. Hay, V. Rastogi, G. Miklau, and D. Suciu, "Boosting the accuracy of differentially private histograms through consistency," Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 1021-1032, 2010. 被引量:1
  • 9C. Li et al., "Optimizing linear counting queries under differential privacy," in Proceedings of the 29th ACM SIGMOD- SIGACT-SIGART symposium on Principles of database systems, 2010, pp. 123-134. 被引量:1
  • 10C. Dwork, "Differential privacy: A survey of results," in Theory and Applications of Models of Computation. Springer, 2008, pp. 1-19. 被引量:1

共引文献161

同被引文献236

引证文献22

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部