期刊文献+

基于深度强化学习的智能体在智慧消防中的应用研究 被引量:7

Application of Agent based on Deep Reinforcement Learning in Intelligent Fire Fighting
下载PDF
导出
摘要 消防直接关系到人民的生命财产安全。针对在火灾发生时因救援环境复杂导致被困人员搜救困难的问题,提出了一种基于深度强化学习的智能体在消防场景中的目标识别和路径规划算法。通过将强化学习算法与卷积神经网络相融合,赋予智能体一定的自主判断、规划分析和目标识别能力。以公共环境中的移动智能体开发应用为背景,针对消防中存在的问题,对智能体在火灾发生前期实现可靠的路径规划和目标识别问题进行深入的应用研究。 Fire protection is directly related to the safety of people's lives and property. Aiming at the difficulty of searching and rescuing trapped people when a fire occurs due to the complex rescue environment, an agent target recognition and path planning algorithm based on deep reinforcement learning are proposed in the fire scene. By combining the reinforcement learning algorithm with the convolutional neural network, the agent is endowed with certain ability of autonomous judgment, planning analysis and target recognition. Based on the development and application of mobile agents in the public environment and aiming at the problem existing in fire fighting, this paper makes an in-depth application study on how to realize reliable path planning and target recognition by agents in the early stage of fire occurrence.
作者 牛浩玉 汤文兵 田锦 NIU Hao-yu;TANG Wen-bing;TIAN Jin(School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan Anhui 232001, China;Engineering School of Networks and Telecommunications, Jinling Institute of Technology, Nanjing Jiangsu 211169, China)
出处 《通信技术》 2019年第10期2567-2572,共6页 Communications Technology
基金 江苏省高等学校自然科学研究面上项目(No.17KJB510020)~~
关键词 智慧消防 深度强化学习 智能体 路径规划 目标识别 intelligent fire fighting deep reinforcement learning agent path planning target recognition
  • 相关文献

参考文献10

二级参考文献93

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2魏英姿 ,赵明扬 .一种基于强化学习的作业车间动态调度方法[J].自动化学报,2005,31(5):765-771. 被引量:19
  • 3高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212. 被引量:1
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235. 被引量:1
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165. 被引量:1
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796. 被引量:1
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682. 被引量:1
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77. 被引量:1
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652. 被引量:1

共引文献978

同被引文献70

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部