期刊文献+

锶锌双掺杂磷灰石型硅酸镧电解质的制备与表征 被引量:1

Preparation and Characterization of Strontium and Zinc Doped Apatite Lanthanum Silicate Electrolyte
下载PDF
导出
摘要 为了提升硅酸镧电解质在中低温时(500~800℃)的电导率,将氧化镧、正硅酸四乙酯与掺杂元素的氧化物做为主要原料,通过溶胶-凝胶法制备了锶、锌双掺杂的磷灰石型硅酸镧电解质材料La9.33SrxSi5ZnO25+x,采用X射线衍射、傅里叶变换红外光谱仪、扫描电子显微镜和变温介电测量系统对样品的物相、微观结构和电导率进行表征。结果表明锶和锌成功进入硅酸镧晶格中,且对晶体的结构与形貌影响较小,以掺量和烧结温度做为变量的研究显示,当Sr的掺量为0.2、Zn的掺量为1、烧结温度为1400℃时,所得到的电学性能最佳,其在800℃下的离子电导率达5.43×10^-3S/cm,相较未掺杂的磷灰石型硅酸镧固体电解质的电导率1.7×10^-3S/cm有一定提高。 To increase the conductivity of lanthanum electrolyte at the temperatures of 500-800 ℃,the electrolyte of Sr and Zn double doped La9.33SrxSi5ZnO25+x was prepared by sol-gel method using La2O3, SrO, ZnO and tetraethoxysilane as raw materials. The phase, microstructure and conductivity of the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy,scanning electron microscopy and variable temperature dielectric measurement system. The results show that Sr and Zn successfully enter the lattice of lanthanum silicate, wielding little influence on the crystal structure and morphology. The maximum ionic conductivity of La9.33SrxSi5ZnO25+x is 5.43×10^-3 S/cm in 0.2 mole ratio of Sr doping at 800 ℃, which is higher than un-doped La9.33Si6O26 ionic conductivity, and the best sintering temperature for La9.33Sr0.2Si5ZnO25.2 electrolyte is 1 400 ℃.
作者 吴昌胜 雷红 黄江胜 姚东辉 程怡林 黄志良 WU Changsheng;LEI Hong;HUANG Jiangsheng;YAO Donghui;CHENG Yilin;HUANG Zhiliang(School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《武汉工程大学学报》 CAS 2019年第5期453-456,共4页 Journal of Wuhan Institute of Technology
基金 国家自然科学基金(51374155) 湖北省科技支撑计划(2014BCB034,2015BAA105) 湖北省自然科学基金(2014CFB796)
关键词 溶胶-凝胶法 固体电解质 硅酸镧 双位掺杂 sol-gel method solid electrolyte lanthanum silicate double doped
  • 相关文献

参考文献6

二级参考文献56

  • 1张密林,王贵领,赵辉,孙丽萍,霍丽华,高山.氧基磷灰石离子导体的研究进展[J].黑龙江大学自然科学学报,2005,22(5):593-601. 被引量:1
  • 2徐国跃,曹敏,刘波,承新,周健.改进的柠檬酸法制备LSGM和LSGMC_(8.5)及其性能比较[J].无机材料学报,2006,21(3):612-618. 被引量:3
  • 3李锋,金江,张华.磷灰石型低温固体电解质材料的研究进展[J].硅酸盐通报,2006,25(4):137-141. 被引量:3
  • 4Baikie T, Mercier P H J, Elcombe M M, et al. Triclinic apatites [J]. Acta Cryst B, 2007, 63: 251- 256. 被引量:1
  • 5Panteix P J, Julien I, Bernache-Assollant D, etal. Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC [J]. Mater Chem Phys, 2006, 95: 313~320. 被引量:1
  • 6Reina L L, Losilla E R, Lara M M, et al. Inters- titial oxygen conduction in lanthanum oxy-apatite electrolytes[J]. J Mater Chem, 2004, 14: 1142-1149. 被引量:1
  • 7Nakayama S, Higuchi Y, Kondo Y, et al. Effects of cation-or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics [J]. SolidState Ionics, 2004, 170: 219-223. 被引量:1
  • 8Tolchard J R, Slater P R, Islam M S. Insight into doping effects in apatite silicate ionic conductors [J]. AdvFunct Mater, 2007, 17: 2564-2571. 被引量:1
  • 9Leon-Reina L, Porras-Vdzquez J M. Low tempera- ture crystal structures of apatite oxygen-conductors containing interstitial oxygen [J]. Dalton Trans, 2007,20 : 2058-2064. 被引量:1
  • 10Sansom J E H, Kendric k E, Tolchard J R, et al. A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates [J]. J Solid State Electrochem, 2006, 10: 562-568. 被引量:1

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部