期刊文献+

基于深度信念网络的航空发动机气路故障诊断技术研究 被引量:5

Research on Fault Diagnosis Technology of Aeroengine Based on Deep Belief Network
下载PDF
导出
摘要 针对传统的航空发动机故障诊断方法正确率较低,并且对异常数据不敏感的问题,将智能诊断算法引入航空发动机气路故障诊断领域。以涡轴发动机为例,分析了常见气路部件故障类型的成因和表现,并在Tensorflow上建立基于深度信念网络的故障诊断模型。与传统的故障诊断方法相比,具有更高的故障诊断正确率。 Because low accuracy and insensitivity to abnormal data exist in the traditional method of fault diagnosis, the intelligent diagnosis algorithm is introduced into the fault diagnosis field of aero-engine gas circuit. Taking the turboshaft for example, the causes and manifestations of common types of gas circuit component faults are analyzed, and a fault diagnosis model based on deep belief network is established on Tensorflow. Compared with the traditional fault diagnosis method, it has a higher fault diagnosis accuracy rate.
作者 林嘉琦 徐建国 刘星怡 LIN Jiaqi;XU Jianguo;LIU Xingyi(College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210001, China)
出处 《机械制造与自动化》 2019年第5期179-182,共4页 Machine Building & Automation
关键词 航空发动机 气路部件 深度信念网络 故障诊断 aero-engine gas circuit component deep belief network fault diagnosis
  • 相关文献

参考文献6

  • 1王秀美..深度学习在回归预测中的研究及应用[D].山东农业大学,2017:
  • 2胡昭华,宋耀良.基于Autoencoder网络的数据降维和重构[J].电子与信息学报,2009,31(5):1189-1192. 被引量:30
  • 3范昕宇..航空发动机传感器神经网络故障诊断及滑模容错控制研究[D].南京航空航天大学,2015:
  • 4胡严思..基于FTA和BAM神经网络的飞机故障诊断系统研究[D].湖南大学,2012:
  • 5彭军,郭晨阳,张勇,张赟,杨欣毅.基于深度学习的航空发动机部件故障诊断[J].系统仿真技术,2018,14(1):20-24. 被引量:17
  • 6刘永建..基于改进神经网络的民机发动机故障诊断与性能预测研究[D].南京航空航天大学,2012:

二级参考文献11

  • 1Tenenbaum J B, Silva V de, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323. 被引量:1
  • 2Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326. 被引量:1
  • 3Rahimi A, Recht B, and Darrell T. Learning to transform time series with a few examples [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1759-1775. 被引量:1
  • 4Wang Liang and Suter D. Learning and matching of dynamic shape manifolds for human action recognition [J]. IEEE Trans. on Image Processing, 2007, 16(6): 1646-1661. 被引量:1
  • 5Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507. 被引量:1
  • 6Zeng Xian-Hua, Luo Si-Wei, and Wang Jiao. Auto-associative neural network system for recognition [C]. Proceedings of the sixth international conference on machine learning and cybernetics, Hong Kong, 2007: 2885-2890. 被引量:1
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence. Neural Computation[J]. 2000, 14(8): 1771-1800. 被引量:1
  • 8Chen H and Murray A F. A continuous restricted Boltzmann machine with hardware-amenable learning algorithm [C]. Proceedings of 12th Int. Conf. on Artificial neural networks (ICANN2002), Madrid, Spain, 2002: 358-363. 被引量:1
  • 9Chen H and Murray A F. Continuous restricted Boltzmann machine with an implementable training algorithm [J]. IEE Proceedings of Vision, Image and Signal Processing, 2003, 150(3): 153-158. 被引量:1
  • 10Hinton G E. Training products of experts by minimizing contrastive divergence. London: Gatsby Computational Neuroscience Unit, Technical Report: GCNU TR 2000-004, 2000. 被引量:1

共引文献45

同被引文献31

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部