摘要
Combustion chamber modeling and simulation of the liquid propellant engine with kerosene as fuel and liquid oxygen as an oxidizer in the turbulent flow field are performed by CFD technique.The flow is modeled as Single-phase in steady state and using RNG k-ε turbulence model.Simulation results are validated by experimental data of thrust,special impulse and combustion chamber pressure.By comparing t.^wo reaction models of finite rate chemistry and frozen model with experimental data,it is concluded that finite rate chemistry has acceptable results.The optimum value of equivalence ratio(oxidizer to fuel ratio)per reaction and operational parameters of the engine which maximize thrust and special impulse are determined.
Combustion chamber modeling and simulation of the liquid propellant engine with kerosene as fuel and liquid oxygen as an oxidizer in the turbulent flow field are performed by CFD technique.The flow is modeled as Single-phase in steady state and using RNG k-ε turbulence model.Simulation results are validated by experimental data of thrust,special impulse and combustion chamber pressure.By comparing t.^wo reaction models of finite rate chemistry and frozen model with experimental data,it is concluded that finite rate chemistry has acceptable results.The optimum value of equivalence ratio(oxidizer to fuel ratio)per reaction and operational parameters of the engine which maximize thrust and special impulse are determined.