期刊文献+

风力机智能叶片颤振建模及主动控制仿真 被引量:3

Flutter Modeling and Active Control Simulation of Smart Wind Turbine Blades
下载PDF
导出
摘要 以带有尾缘襟翼的NREL 5 MW参考风力机为研究对象,综合考虑非定常气动力、气动阻尼和弯扭耦合等因素,建立了改进的智能叶片气弹模型,并与FAST平台进行仿真对比。基于径向基函数(RBF)神经网络自适应比例、积分、微分(PID)方法设计了尾缘襟翼主动控制器,在标准湍流风况下对叶尖偏移量进行仿真控制。结果表明:改进气弹模型的准确度较高;尾缘襟翼主动控制方法可有效减小叶尖偏移量的波动。 Taking the NREL 5 MW reference wind turbine with trailing edge flaps as an object of study, an improved aeroelastic model was established for the smart blade considering the unsteady aerodynamics, aerodynamic damping and bend-twist coupling, of which the simulation results were compared with that of FAST platform. Based on the adaptive PID of RBF neural network, an active controller was designed for the trailing edge flap to control the deflection of blade tips under standard turbulent wind conditions. Results show that the accuracy of the improved aeroelastic model is relatively high;the active controller for the trailing edge flap can effectively reduce the fluctuation of the blade tip deflection.
作者 张文广 王媛媛 刘瑞杰 沈炀智 ZHANG Wenguang;WANG Yuanyuan;LIU Ruijie;SHEN Yangzhi(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)
出处 《动力工程学报》 CAS CSCD 北大核心 2019年第9期758-764,776,共8页 Journal of Chinese Society of Power Engineering
基金 国家重点研发计划资助项目(2017YFB0602105) 北京市共建资助项目(GJ2017006) 中央高校基本科研业务费专项资金资助项目(2018ZD05)
关键词 风力机 尾缘襟翼 气动阻尼 弯扭耦合 RBF神经网络 自适应PID wind turbine trailing edge flap aerodynamic damping bend-twist coupling RBF neural net work adaptive PID
  • 相关文献

参考文献9

二级参考文献29

  • 1蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:54
  • 2Veers P S, Ashwill T D, Sutherland H J, et al. Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades [J]. Wind Energy, 2003, 6(3): 245-259. 被引量:1
  • 3Barlas T K, Van Kuik G A M. Review of State of the Art in Smart Rotor Control Research for Wind Turbines [J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27. 被引量:1
  • 4Troldborg N. Computational Study of the Riso-Bl-18 Air- foil With a Hinged Flap Providing Variable Trailing EdgeGeometry [J]. Wind Engineering, 2005, 29(2): 89 113. 被引量:1
  • 5Lackner M A, Van Kuik G. A Comparison of Smart Ro- tor Control Approaches Using Trailing Edge Flaps and Individual Pitch Control [J]. Wind Energy, 2010, 13(2/3): 11134. 被引量:1
  • 6Wilson D G, Resor B R, Berg D E, et al. Active Aerody- namic Blade Distributed Flap Control Design Procedure for Load Reduction on the up Wind 5 MW Wind Turbine [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting, 2010:4 7. 被引量:1
  • 7Andersen P B. Advanced Load Alleviation for Wind Tnr- bines Using Adaptive Trailing Edge Flaps: Sensoring and Control [D]. Roskilde, Denmark, Technical University of Denmark, 2010. 被引量:1
  • 8Jonkman J, Butterfield S, Musial W, et al. Definition of a 5 MW Reference Wind Turbine for Offshore System De- velopment [R]. USA, Golden, Colorado: NREL/TP-500- 38060. 2009. 被引量:1
  • 9Van Engelen T G, Van Def Hooft E L. Individual Pitch Control Inventory [R]. Delft, No.ECN-C-03-138, Technical Report of Technical University of Delft, 2005. 被引量:1
  • 10Bossayni E A. Individual Blade Pitch Control for Load Reduction [J]. Wind Energy, 2003, 6:119 128. 被引量:1

共引文献28

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部