期刊文献+

New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing’an Range, Northeast China 被引量:4

New Fractal Evidence of Pacific Plate Subduction in the Late Mesozoic, Great Xing’an Range, Northeast China
原文传递
导出
摘要 Late Mesozoic granitoids are widespread in the Great Xing’an Range(GXR), which is part of a large igneous province in eastern China. The geodynamic setting of the Late Mesozoic granitoids is still debated, and there have been two dominant models proposed, subduction and thermal erosion. This study discusses the geodynamic mechanisms from a new perspective on ages of the granitoids and fractal dimensions of their shape. Our results show that granitoids become gradually older from South GXR to North GXR to Erguna Block(EB) in the Jurassic, and opposite in the Cretaceous. The fractal dimensions of the Perimeter-area model(DAP) exhibit the same features. The values of DAP are smaller from South GXR(0.673 1) to North GXR(0.628 0) to EB(0.607 9) in the Jurassic, and larger from South GXR(0.609 6) to North GXR(0.630 2) to EB(0.639 9) in the Cretaceous. This implies that the geometrical irregularities of the granitoids are shaped by subduction rather than thermal erosion. These spatial variations could be best explained by the subduction of the Pacific Plate and consequent granitoid magmatism in the Late Mesozoic, thus providing a new fractal evidence for Pacific Plate subduction mechanism and opening a new possibility method for studing plate movement. Late Mesozoic granitoids are widespread in the Great Xing’an Range(GXR), which is part of a large igneous province in eastern China. The geodynamic setting of the Late Mesozoic granitoids is still debated, and there have been two dominant models proposed, subduction and thermal erosion. This study discusses the geodynamic mechanisms from a new perspective on ages of the granitoids and fractal dimensions of their shape. Our results show that granitoids become gradually older from South GXR to North GXR to Erguna Block(EB) in the Jurassic, and opposite in the Cretaceous. The fractal dimensions of the Perimeter-area model(DAP) exhibit the same features. The values of DAP are smaller from South GXR(0.673 1) to North GXR(0.628 0) to EB(0.607 9) in the Jurassic, and larger from South GXR(0.609 6) to North GXR(0.630 2) to EB(0.639 9) in the Cretaceous. This implies that the geometrical irregularities of the granitoids are shaped by subduction rather than thermal erosion. These spatial variations could be best explained by the subduction of the Pacific Plate and consequent granitoid magmatism in the Late Mesozoic, thus providing a new fractal evidence for Pacific Plate subduction mechanism and opening a new possibility method for studing plate movement.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2019年第5期1031-1040,共10页 地球科学学刊(英文版)
基金 supported by the National Key R & D Program of China (No. 2016YFC0600501) the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing 295 (No. KLIGIP-2017A03) the National and Nature Science Foundation of China (Nos. 41430320, 41572315)
关键词 GRANITOIDS Late MESOZOIC FRACTAL dimension Pacific SUBDUCTION GREAT Xing’an RANGE Northeast China geochemistry mathematical geology granitoids Late Mesozoic fractal dimension Pacific subduction Great Xing’an Range Northeast China geochemistry mathematical geology
  • 相关文献

参考文献7

二级参考文献85

共引文献778

同被引文献95

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部