期刊文献+

反演一类间断热传导方程的辐射系数 被引量:1

Inverse Problems about the Radiative Coefficient in A Class of Discontinuous Heat Conduction Equations
下载PDF
导出
摘要 讨论了一个利用终端观测数据重构抛物型方程未知系数的反问题,这类问题在科学研究中有重要的应用.与一般问题不同的是,未知系数是间断的函数.基于最优控制理论,证明了控制泛函极小元的存在性及其满足的必要条件,并讨论了最优解的唯一性及稳定性.运用Gradient型迭代法进行数值模拟,且未知系数反演的效果也很好. The inverse problem of determining the unknown coefficient from the final measurement data is discussed, which has important application in a large fields of applied science, and the radiative coefficient is a discontinuous function.Based on the optimal control framework, the existence, uniqueness and stability of the minimizer for the cost functional are established, the numerical simulation with the Gradient iterative method is conducted, and that the unknown coefficient is recovered very well.
作者 曾剑 张泰年 任建龙 甄苇苇 Zeng Jian;Zhang Tainian;Ren Jianlong;ZhenWeiwei(School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China)
出处 《宁夏大学学报(自然科学版)》 CAS 2019年第3期208-214,共7页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(11261029,11461039) 甘肃省自然科学基金资助项目(145RJZA124)
关键词 反问题 最优控制 唯一性 稳定性 数值模拟 inverse problem optimal control uniqueness stability numerical simulation
  • 相关文献

参考文献4

二级参考文献72

  • 1Badia A, Moutazaim F. A one-phase inverse Stefan problem [J]. Inverse Problems, 1999, 15(6): 1507-1522. 被引量:1
  • 2Colton D, Reemtsen R. The numerical solution of the inverse Stefan problem in two space variables [J]. SIAM Journal on Applied Mathematics, 1984, 44(5): 996-1013. 被引量:1
  • 3Jochum P. The inverse Stefan problem as a problem of nonlinear approximation theory [J]. Journal of Approximation Theory, 1980, 30(2): 81-98. 被引量:1
  • 4Jochum P. The numerical solution of the inverse Stefan problem [J]. Numerische Mathematik, 1980, 34(4): 411-429. 被引量:1
  • 5Reemtsen R, Kirsch A. A method for the numerical solution of the one-dimensional inverse Stefan problem [J]. Numerische Mathematik, 1984, 45(2): 253-273. 被引量:1
  • 6Afshari'A. Identification de L 'evolution d Un Fron't de Fusion/Solidification Par la ReSolution de L'equation Inverse de la Chaleur Dans le Domaine Solide [D]. Ph. D dissertation. Paris, France: Universit- de Paris-Sud Centre d'orsay, 1990. 被引量:1
  • 7Katz M, Rubinsky B. An inverse finite-element technique to determine the change of phase interface location in one-dimensional melting problems [J]. Numerical Heat Transfer, 1984, 7(3): 269-283. 被引量:1
  • 8Wang X, Rosset-Louerat M, Benard C. Inverse problem: identification of a melting front in the 2D case [M]//Barbu V, Tiba D. Optimization, Optimal Control and Partial Differential Equations: First Franco-Romanian Conference. Berlin: Birkhauser, 1992. 被引量:1
  • 9Hadamard J. Lectures on Cauchy' s Problem in Linear Partial Differential Equations [M]. New York: Yale University Press, 2003. 被引量:1
  • 10Tikhonov A, Arsenin V Y. Solutions of Ill-Posed Problems [M]. Washington, D.C.: John Wiley & Sons, New York: V. H. Winston & Sons, 1977. 被引量:1

共引文献17

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部