期刊文献+

实值闭式求根快速阵列测向算法 被引量:2

Fast array direction finding algorithm based on real-valued closed-form rooting
下载PDF
导出
摘要 谱峰搜索类多重信号分类MUSIC(multiple signal classification,MUSIC)算法作为测向算法中的经典算法,由于具有良好的参数估计性能,因此被广泛使用.但由于庞大的计算量,提高了测向系统的复杂度以及研发成本.相比之下,利用多项式求根获取目标信源方位信息的求根MUSIC(root multiple signal classification,root-MUSIC)算法降低了测向的计算复杂度.但由于root-MUSIC算法涉及复系数多项式求根运算,因此其计算量依然很大.为进一步有效降低算法的计算量,本文基于空间谱函数的极值处导数为零这一性质,提出一种基于实系数多项式闭式求根的快速阵列测向算法.所提算法利用坐标映射关系,在新的坐标系u域内构造一个与传统z域root-MUSIC算法同阶次的实系数求根多项式.同时,由于多项式的根关于实轴对称,利用Bairstow算法进一步将该实系数多项式分解为若干个二次多项式,最后利用一元二次方程求根公式直接给出对目标信源方位信息的估计结果.理论分析和仿真实验表明:新算法相比于传统root-MUSIC算法极大降低了计算量,提高了测向速度,同时保持了相同的估计精度. Multiple signal classification (MUSIC) algorithm by peak searching is a classical algorithm in direction finding algorithm, which has been widely used because of its good parameter estimation performance, while it needs huge amounts of calculation, which increases the complexity of the direction finding system and the development cost. In contrast, root-MUSIC algorithm that utilizes polynomial rooting to obtain the target source direction information can reduce the computational complexity of the direction finding. However, root-MUSIC algorithm involves complex-valued coefficient polynomial rooting operation, and its complexity is still high. To further effectively reduce complexity, a novel fast array direction finding algorithm based on the real-valued coefficient polynomial closed root finding was proposed. By utilizing coordinate mapping technique as well as the fact that the derivatives with respect to the extreme values of the MUSIC spectrum equal to zero, a new polynomial in the domain with the same order as root-MUSIC in the domain was constructed. Since roots of the polynomial were found symmetric about the real axis, the new polynomial could be further decomposed into several quadratic polynomials by exploiting Bairstow’s method. Consequently, the target source direction information could be estimated by finding the roots of those quadratic polynomials with closed forms. Theoretical analysis and numerical simulation results show that the calculation complexity of the proposed method was significantly reduced compared with the standard root-MUSIC, and the direction finding speed was improved as the estimate accuracy remained the same.
作者 孟祥天 李享 闫锋刚 薛敬宏 MENG Xiangtian;LI Xiang;YAN Fenggang;XUE Jinghong(School of Information Science and Engineering,Harbin Institute of Technology,Weihai,Weihai 264209,Shandong,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第11期40-46,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(61501142) 哈尔滨工业大学(威海)学科建设引导基金(WH20160107) 威海市科技发展计划项目
关键词 DOA估计 实系数多项式 坐标映射 Bairstow算法 DOA estimation real coefficient polynomial coordinate mapping technique Bairstow's method
  • 相关文献

参考文献4

二级参考文献25

  • 1齐崇英,陈志杰,张永顺,陈西宏.基于投影预变换的快速DOA估计算法[J].系统工程与电子技术,2006,28(4):525-528. 被引量:4
  • 2Krim H, Viberg M. Two decades of array signal processing research[J]. IEEE Signal Processing Magazine, 1996,13(4):67-94. 被引量:1
  • 3Kay, S M and S L Marple. Spectral analysis: a modern perspective[J]. Proc. of the IEEE, 1981, 69:1380- 1419. 被引量:1
  • 4Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proc. IEEE, 1969, 57 (8): 1408 - 1418. 被引量:1
  • 5Schmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. 1986, AP-34 (3) : 276-280. 被引量:1
  • 6Stocia P and A Nehorai. MUSIC, Maximum likelihood, and Cramer-Rao bound[J]. IEEE Trans. Acoust. , Speeach, Signal Processing, 1989, 37 (5): 720-741. 被引量:1
  • 7Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. IEEE Trans. On ASSP, 1988,36(7):965- 979. 被引量:1
  • 8Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds[J]. IEEE Trans. On ASSP, 1989, 37(11): 1703-1720. 被引量:1
  • 9A B Gershman, P Stoica. Mode with Extra-roots (MODEX) : A new DOA estimation algorithm with an improved threshold performance[J]. Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal. 1999,5(15-19) : 2833-2836. 被引量:1
  • 10J Selva. Computation of spectral and Root MUSIC Through real polynomial rooting [J]. IEEE Trans. On Signal Processing, 2005,53(5) : 1923-1927. 被引量:1

共引文献24

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部