期刊文献+

应用于不平衡多分类问题的损失平衡函数 被引量:8

Application of the loss balance function to the imbalanced multi-classification problems
下载PDF
导出
摘要 传统分类算法一般要求数据集类别分布平衡,然而在实际情况中往往面临的是不平衡的类别分布。目前存在的数据层面和模型层面算法试图从不同角度解决该问题,但面临着参数选择以及重复采样产生的额外计算等问题。针对此问题,提出了一种在小批量内样本损失自适应均衡化的方法。该算法采用了一种动态学习损失函数的方式,根据小批量内样本标签信息调整各样本损失权重,从而实现在小批量内各类别样本总损失的平衡性。通过在caltech101和ILSVRC2014数据集上的实验表明,该算法能够有效地减少计算成本并提高分类精度,且一定程度上避免了过采样方法所带来的模型过拟合风险。 The traditional classification algorithms generally require a balanced distribution of various categories in datasets.However,the traditional classification algorithms often encounter an imbalanced class distribution in real life.The existing data-and classifier-level methods that attempt to solve this problem based on different perspectives exhibit some disadvantages,including the selection of parameters that have to be handled carefully and additional computing power because of repeated sampling.To solve these disadvantages,a method that can adaptively maintain the loss balance of examples in a mini-batch is proposed.This algorithm uses a dynamic loss-learnt function to adjust the loss ratio of each sample based on the information present in the label in every mini-batch,thereby achieving a balanced total loss for each class.The experiments conducted using the caltech101 and ILSVRC2014 datasets denote that this algorithm can effectively reduce the computational cost,improve the classification accuracy,and avoid the overfitting risk of the model that can be attributed to the oversampling method.
作者 黄庆康 宋恺涛 陆建峰 HUANG Qingkang;SONG Kaitao;LU Jianfeng(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第5期953-958,共6页 CAAI Transactions on Intelligent Systems
关键词 不平衡学习 不平衡数据分类 多分类不平衡 损失平衡 不平衡数据分类算法 不平衡数据集 F1调和平均 卷积神经网络 深度学习 imbalanced learning imbalanced data classification imbalanced multi-classification loss balance classificationalgorithm for imbalanced data imbalanced dataset F1 measure convolutional neural networks deep learning
  • 相关文献

同被引文献85

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部