期刊文献+

Emission reduction characteristics of a catalyzed continuously regenerating trap after-treatment system and its durability performance 被引量:2

Emission reduction characteristics of a catalyzed continuously regenerating trap after-treatment system and its durability performance
原文传递
导出
摘要 The primary purpose of this study was to investigate the effect of a catalyzed continuously regenerating trap(CCRT)system composed of a diesel oxidation catalyst(DOC)and a catalyzed diesel particulate filter(CDPF)on the main gaseous and particulate emissions from an urban diesel bus,as well as the durability performance of the CCRT system.Experiments were conducted based on a heavy chassis dynamometer,and a laboratory activity test as well as X-ray photoelectron spectroscopy(XPS)test were applied to evaluate the changes of the aged CCRT catalyst.Results showed that the CCRT could reduce the CO by 71.5%and the total hydrocarbons(THC)by 88.9%,and meanwhile promote the oxidation of NO.However,the conversion rates for CO and THC dropped to 25.1%and 55.1%,respectively,after the CCRT was used for one year(~60,000 km),and the NO oxidation was also weakened.For particulate emissions,the CCRT could reduce 97.4%of the particle mass(PM)and almost 100%of the particle number(PN).The aging of the CCRT resulted in a reduced PM trapping efficiency but had no observable effect on the PN;however,it increased the proportion of nucleation mode particles.The activity test results indicated that the deterioration of the CCRT was directly relevant to the increase in the light-off temperatures of the catalyst for CO,C3H8 and NO2.In addition,the decreased concentrations of the active components Pt2+ and Pt4+ in the catalyst are also important factors in the CCRT deterioration. The primary purpose of this study was to investigate the effect of a catalyzed continuously regenerating trap(CCRT)system composed of a diesel oxidation catalyst(DOC)and a catalyzed diesel particulate filter(CDPF)on the main gaseous and particulate emissions from an urban diesel bus,as well as the durability performance of the CCRT system.Experiments were conducted based on a heavy chassis dynamometer,and a laboratory activity test as well as X-ray photoelectron spectroscopy(XPS)test were applied to evaluate the changes of the aged CCRT catalyst.Results showed that the CCRT could reduce the CO by 71.5%and the total hydrocarbons(THC)by 88.9%,and meanwhile promote the oxidation of NO.However,the conversion rates for CO and THC dropped to 25.1%and 55.1%,respectively,after the CCRT was used for one year(~60,000 km),and the NO oxidation was also weakened.For particulate emissions,the CCRT could reduce 97.4%of the particle mass(PM)and almost 100%of the particle number(PN).The aging of the CCRT resulted in a reduced PM trapping efficiency but had no observable effect on the PN;however,it increased the proportion of nucleation mode particles.The activity test results indicated that the deterioration of the CCRT was directly relevant to the increase in the light-off temperatures of the catalyst for CO,C3H8 and NO2.In addition,the decreased concentrations of the active components Pt2+ and Pt4+ in the catalyst are also important factors in the CCRT deterioration.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第10期166-173,共8页 环境科学学报(英文版)
基金 supported by the National Key Research and Development Program of China (No. YS2017ZY020019) Research Project of Shanghai Committee of Science and Technology (No. 18DZ1202900) the China Scholarship Council (No. 201806260133)
关键词 Diesel BUS CATALYZED continuously regenerating trap(CCRT) Emissions DURABILITY DETERIORATION Diesel bus Catalyzed continuously regenerating trap(CCRT) Emissions Durability Deterioration
  • 相关文献

参考文献7

二级参考文献28

共引文献42

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部