摘要
针对双响应曲面模型的参数不确定性、参数之间的层次结构以及模型的异方差问题,结合分层贝叶斯建模方法提出一种新的均值-方差双响应曲面模型,并在此基础上运用所提方法实现了产品/过程的稳健参数设计。首先,建立分层贝叶斯模型,并获得参数的后验分布;其次利用Gibbs采样获得参数估计值,在此基础上构建质量损失函数,并采用遗传算法对质量损失函数进行优化求得可控因子的最佳设计水平;最后,从模型具有同方差和异方差两种情形出发,结合具体实例分别采用普通最小二乘、加权最小二乘及分层贝叶斯建立双响应曲面模型进行了比较分析,验证了所提方法的有效性。
As for model parameter uncertainty of the dual response surface model, the hierarchical structure among different parameters and the model heteroscedasticity problem, a new mean-variance dual response surface model is proposed by using the hierarchical Bayesian modeling method. The robust parameter design of product or process can be achieved based on the proposed method. Firstly, a hierarchical Bayesian model is established , and the posterior inference of the parameters is obtained based on the prior information. Secondly, uses Gibbs sampling to obtain an estimate of the parameters. Thirdly, the quality loss function is constructed based on the posterior samples and then the genetic algorithm is used to optimize the quality loss function to find the optimal parameter settings. Finally, starting from the two cases of the model with the same variance structure and heteroscedastic structure, the ordinary least squares, weighted least squares and hierarchical Bayesian model are used respectively to establish the double response surface models and further carry out the comparative analysis, which are used to verify the effectiveness of the proposed method.
作者
杨世娟
汪建均
YANG Shijuan;WANG Jianjun(School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2019年第10期2293-2303,共11页
Systems Engineering and Electronics
基金
国家自然科学基金(71771121,71871119)
中央高校基本科研业务费专项资金(30915011102)资助课题