摘要
目的建立足踝步态模拟仿真平台,探讨其在足踝生物力学研究中的应用。方法 2017年11月至2018年4月,对捐献的6具足踝部新鲜冰冻标本进行生物力学研究。捐献者包括3名男性和3名女性,年龄48~69岁,平均58.8岁;均无足踝部疾患。利用4个独立电动机牵拉足踝部标本分成4束的9条肌腱,分别是内侧肌腱(胫后肌腱、拇长屈肌腱、趾长屈肌腱)、外侧肌腱(腓骨长肌、腓骨短肌)、后侧肌腱(跟腱)、前方肌腱(胫前肌腱、拇长伸肌腱、趾长伸肌腱),由6个电动机驱动的平台提供胫骨的六自由度运动,独立液压系统提供胫骨轴向压力,驱动新鲜足踝标本完成一个步态周期。采集标本在步态周期中踝关节运动学和足底地面反作用力数据,与正常人体步态参数相比较,从踝关节运动学和足底地面反作用力两个维度研究该机器的步态模拟仿真效果。结果步态周期中踝关节运动表现为矢状面上先跖屈,约在18%步态周期时达最大跖屈(约10°),而后发生背伸运动,在步态周期约40%时,达到中立位,步态周期约83%时达到最大背伸(约22°);在冠状面上,踝关节运动表现为先内翻后外翻,角度变化范围约10°,水平面上踝关节运动范围不大。垂直地面反作用力在25%步态周期时出现第一次峰值,约为体重的1.1~1.3倍,在约70%步态周期时出现第二次峰值,大小略低于第一次峰值;前后方向地面反作用力在步态周期约30%时达到峰值,作用力与足长轴平行,方向向后指向足跟,随后变为向前的推力,在步态周期约83%时达到峰值。在一个步态周期中,内外方向地面反作用力大小变化不大,方向为由足外侧指向足内侧。在6具标本中测得的踝关节角度变化数值和地面反作用力数值的重复性系数均接近或超过0.90。结论胫骨六自由度足踝步态模拟机,在踝关节运动学和足底地面反作用力的两个参数方面,与人体足踝部运动仿真度�
Objective To setup a custom-made gait simulator, and to provide an efficient tool for biomechanics research of ankle and foot. Methods From November 2017 to April 2018, a total of 6 fresh frozen specimens of the foot and ankle were collected. The donated specimens, free of diseases in the foot and ankle part, were from the Department of Anatomy, Shanghai Medical College of Fudan University. Donors were 3 males and 3 females, aged from 48 to 69 years old, with an average age of 58.8 years old. The nine tendons in the foot were divided into 4 bundles, including anterior group comprised of tibialis anterior (TA), extensor hallucis longus (EHL) and extensor digitorum longus (EDL). Posterior group comprised of Achilles's tendon (AT). Medial group comprised of tibialis posterior (TP), flexor hallucis longus (FHL), and flexor digitorum longus (FDL). Lateral group comprised of peroneus brevis (PB) and peroneus longus (PL). A custom-made gait simulator was set up by using four independent electro motors to actuate 4 bands of tendons in the foot and another six motors to control tibia to achieve 6 degree-freedom parallel mechanism. And a hydraulic machine was used to provide axial pressure along tibia. Gait cycle of six fresh frozen cadaver feet was reproduced using this machine, and the kinematics data of ankle movement and ground reaction force (GRF) data was collected. By comparing the data above with the normal human gait data, the simulation Results were analyzed to explore the clinical usage of this machine. Results On the sagittal plane, the ankle appeared to plantarflexion at the beginning of gait, and then turned to dorsiflexion after the max plantar flexion (about 10°) at 18% of gait cycle. At the 40% gait cycle, ankle joint was in neutral position and reached its max dorsiflexion (about 22°) at 83% gait cycle. On the coronal plane, ankle joint appeared inversion at the beginning and eversion afterwards with 10° range of change. On the horizontal plane, movement of ankle joint was small. Results showed that th
作者
朱根锐
王之枫
袁承杰
耿翔
王晨
张超
黄加张
王旭
马昕
Zhu Genrui;Wang Zhifeng;Yuan Chengjie;Geng Xiang;Wang Chen;Zhang Chao;Huang Jiazhang;Wang Xu;Ma Xin(Department of Orthopaedics,Huashan Hospital, Fudan University,Shanghai 200040,China)
出处
《中华骨科杂志》
CAS
CSCD
北大核心
2019年第17期1068-1074,共7页
Chinese Journal of Orthopaedics
基金
国家自然科学基金(81572176,81772416).
关键词
踝关节
生物力学
步态
Ankle joint
Biomechanics
Gait