期刊文献+

基于区域分割的混合地震预测算法 被引量:3

Hybrid Algorithm Based on Region Segmentation for Earthquake Prediction
下载PDF
导出
摘要 由于地震区域地质结构的差异性,采用单一模型难以在分割后的所有小区域都达到较好的预测效果。为此,提出一种基于区域分割的混合型算法。分别利用反向传播神经网络算法和树突状细胞算法对分割后的区域进行建模,选择效果较好的算法作为该区域的预测算法。根据不同区域的权值来预测整个大区域的地震发生情况。实验结果表明,该算法能够有效改善地震预测的效果。 Due to the variations of geological structure in different earthquake regions,earthquake prediction in the sub-regions after dividing may not be well performed by a simple model.To solve this problem,a hybrid algorithm based on region segmentation is presented.After region segmentation,Back Propagation Neural Network (BPNN) algorithm and Dendritic Cell Algorithm(DCA) are respectively used to model each sub-region,and the better one is selected as the prediction algorithm of the sub-region.The earthquake occurrence situation in the whole region is calculated according to the weights of each sub-region.Experimental results show that the proposed algorithm can improve the effect of earthquake prediction.
作者 周天祥 董红斌 周雯 ZHOU Tianxiang;DONG Hongbin;ZHOU Wen(School of Cyber Science and Engineering,Wuhan University,Wuhan 430072,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第9期310-315,共6页 Computer Engineering
基金 国家自然科学基金“计算机免疫智能的连续应答机制及其应用研究”(61877045)
关键词 树突状细胞算法 反向传播神经网络 混合算法 区域分割 地震预测 Dendritic Cell Algorithm(DCA) Back Propagation Neural Network(BPNN) hybrid algorithm region segmentation earthquake prediction
  • 相关文献

参考文献4

二级参考文献71

  • 1李强,徐戈,杨彩霞.人工神经网络在潜在地震危险区估计中的应用[J].华北地震科学,2007,25(2):36-41. 被引量:3
  • 2Freund Y, Iyer R, Schapire R E, et al. An Efficient Boosting Al-gorithm for Combining Preferences//Proc of the International Con-ference on Machine Learning. Madison, USA, 1998:170-178. 被引量:1
  • 3Herschtal A, Raskutti B. Optimizing Area under the ROC Curve Using Gradient Descent//Proc of the 21 st International Conference on Machine Learning. Banff, Canada, 2004:49-56. 被引量:1
  • 4Rakotomamonjy A. Optimizing AUC with Support Vector Machine (SVM) // Proc of the European Conference on Artificial Intelli-gence Workshop on ROC Analysis and Artificial Intelligence. Valen-cia, Spain, 2004:71-80. 被引量:1
  • 5Rakotomamonjy A. Quadratic Programming fur AUC Optimization // Proc of the 2nd International Conference on Modelling, Computa-tion and Optimization in Information Systems and Management Sci-ences. Metz, France, 2004:603-610. 被引量:1
  • 6Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters, 2006, 27(8) : 861-874. 被引量:1
  • 7Rosset S. Model Selection via the AUC//Proc of the 21st Interna-tional Conference on Machine Learning. Banff, Canada, 2004:89-97. 被引量:1
  • 8Wu S, Flach P. A Scored AUC Metric for Classifier Evaluation and Selection// Proc of the ICML Workshop on ROC Analysis in Ma-chine Learning. Bonn, Germany, 2005 : 247-262. 被引量:1
  • 9Hand D J, Till R J. A Simple Generalization of the Area under the ROC Curve for Multiple-Class Classification Problems. Machine Learning, 2001, 45(2): 171-186. 被引量:1
  • 10Calders T, Jaroszewicz S. Efficient AUC Optimization for Classifi-cation//Proc of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases. Warsaw, Poland, 2007:42-53. 被引量:1

共引文献81

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部