期刊文献+

基于多个相关滤波器的行人跟踪尺度算法 被引量:4

Pedestrian Tracking Scale Algorithm Based on Multiple Correlation Filters
下载PDF
导出
摘要 外观、尺度变化是行人跟踪的难点,解决行人多尺度跟踪问题是增强算法实用性的关键因素.在KCF(kernel correlation filter)算法的基础上,本文采用多个相关滤波器(如头部、臀部)辅助身体躯干滤波器的匹配跟踪.通过获得图像帧(除第一帧外)与初始帧的行人头部和臀部之间的距离变化率来缩放搜索面积,解决目标定位不准确和时间浪费的问题;通过调整目标框的尺寸,解决目标模板逐渐包括背景特征或者逐渐被局部特征取代的问题.在VOT2016的18个有明显尺度变化的行人场景视频序列上进行了测试,实验结果表明所提算法具有更高的跟踪准确率. Appearance and scale change are the difficulties of pedestrian tracking. To solve the problem of multiscale pedestrian tracking is the key factor to enhance the practicability of the algorithm. On the basis of KCF(kernel correlation filter) algorithm,this paper uses multiple correlation filters(such as head and hip)to assist the tracking of the body trunk filter. The distance change rate which is obtained by comparing the distance between the pedestrian’s head and hip of every image frame(except the first frame)with the initial frame is used to zoom the search area, so as to avoid inaccurate target location and time waste. By adjusting the size of the target’s bounding box, the problem of target’s template shift caused by gradual change of the target template including background features or local features is solved. The experiment is conducted on eighteen pedestrian scene video sequences with obvious scale changes in VOT2016 dataset, and the experimental results show that the algorithm proposed has higher tracking accuracy.
作者 张云洲 郑瑞 暴吉宁 朱尚栋 ZHANG Yun-zhou;ZHENG Rui;BAO Ji-ning;ZHU Shang-dong(School of Information Science & Engineering,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第9期1228-1233,1239,共7页 Journal of Northeastern University(Natural Science)
基金 沈阳市高层次创新人才支持计划项目(RC170490) 中央高校基本科研业务费专项资金资助项目(N172608005,N182608004) 国家自然科学基金资助项目(61471110,61733003)
关键词 行人多尺度跟踪 相关滤波器相互辅助 KCF(核相关滤波器) 搜索范围 跟踪准确率 pedestrian multi-scale tracking correlation filters mutually assisted KCF(kernel correlation filter) search range tracking accuracy
  • 相关文献

参考文献3

二级参考文献20

  • 1P′erez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[C]. Proc of the 7th European Conf on Computer Vision. Berlin: Springer-Heidelberg, 2002: 661-675. 被引量:1
  • 2Wu Y, Lim J, Yang M H. Online object tracking: A benchmark[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2411-2418. 被引量:1
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 4Fieguth P, Terzopoulos D. Color-based tracking of heads and other mobile objects at video frame rates[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. San Juan: IEEE, 1997: 21-27. 被引量:1
  • 5Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643. 被引量:1
  • 6Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vision. 2008, 77(1/2/3): 125-141. 被引量:1
  • 7Han B, Davis L. On-line density-based appearance modeling for object tracking[C]. Proc of IEEE Int Conf on Computer Vision. Beijing: IEEE, 2005: 1492-1499. 被引量:1
  • 8Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 798-805. 被引量:1
  • 9Kwon J, Lee K M. Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Kyoto: IEEE, 2009: 1208-1215. 被引量:1
  • 10Cehovin L, Kristan M, Leonardis A. An adaptive coupled-layer visual model for robust visual tracking[C]. Proc of IEEE Int Conf on Computer Vision. Barcelona: IEEE, 2011: 1363-1370. 被引量:1

共引文献8

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部