期刊文献+

基于MD5-KNN的Wi-Fi室内定位算法研究 被引量:4

Research on Wi-Fi indoor location algorithm based on MD5-KNN
下载PDF
导出
摘要 为降低RSSI指纹数据库中指纹数据量和AP数量对KNN算法的运算效率的影响,提出一种基于MD5-KNN的Wi-Fi室内定位算法,对大型场所构建的RSSI指纹数据库进行优化。在离线阶段,将RSSI指纹数据库中的每条指纹转换成包含32位16进制表示的MD5序列。在线上阶段,该算法完成定位所需时间与AP数量无关,且不随指纹数量的增加而线性增加,降低了定位所需时间和运算量。同时,该算法自适应地匹配出合适的K值,有效解决了RSSI-KNN算法需手动设定K值的问题。实验结果表明,该算法有效提高了基于Wi-Fi的室内定位技术的定位精度以及定位效率。 In order to reduce the influence of fingerprint data amount and AP number in the RSSI fingerprint database on the computational efficiency of the KNN algorithm,this paper proposed a Wi-Fi indoor positioning algorithm based on MD5-KNN,which optimized the fingerprint database of large place. In the offline phase,the algorithm converted each fingerprint into a MD5 sequence that included a 32 bit hexadecimal representation. In the online phase,the time it took for the algorithm to locate was linear with the number of APs and did not increase linearly with the number of fingerprints,which reduced the time and calculation amount required for positioning effectively. At the same time,this algorithm calculated the appropriate K adaptively,so as to effectively solve the problem that the RSSI-KNN algorithm needs to manually set the value of K. The experimental results show that the proposed algorithm can effectively improve the positioning accuracy and location efficiency of the indoor positioning technology based on Wi-Fi.
作者 苗云龙 陆彦辉 尹峰 杨守义 Miao Yunlong;Lu Yanhui;Yin Feng;Yang Shouyi(School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China;Shenzhen Institute of Big Data,The Chinese University of Hong Kong,Shenzhen Guangdong 518172,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第9期2746-2749,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61571401,61701426) 河南省技术创新引导专项资助项目(182106000027)
  • 相关文献

参考文献4

二级参考文献25

  • 1房秉毅.基于超宽带技术的室内定位系统[J].电子技术应用,2006,32(7):124-127. 被引量:15
  • 2胡圣.室内定位系统(重庆邮电大学硕士论文)[D]2006. 被引量:1
  • 3朱敏.无线局域网定位技术研究.网络与通信,2009,. 被引量:1
  • 4R. Tesorieroa, R. Tebara, J.A. Gallud, M.D Lozanoa, V.M.R. Penicheta. Improving location awareness in indoor spaces using RFID technology[J]. Expert Systems with Applications, 2010,37(1) : 894-898. 被引量:1
  • 5Junghyo Kim, Dongho Jung, Yeonsu Jung, and Yunju Baek. Scalable RTLS: Design and Implementation of the Scalable Real Time Locating System Using Active RFID[J]. Lecture Notes in Computer Science, 2008, Volume 5200: 503-512. 被引量:1
  • 6Ni L M, Liu Yunhao. LANDMARC: Indoor location sensing using active RFID[J]. WirelessNetworks, 2004, 10 (6):701 - 710. 被引量:1
  • 7Deng Zhongliang, Yu Yanpei, Yuan Xie, et al. Situation and development tendency of indoor positioning[ J]. Chi- na Communications, Mar. 2013:42-55. 被引量:1
  • 8Haeberlen A, Flannery E, Ladd A, et al. Practical robust localization over large-scale 802.11 wireless networks[ J ]. Tile iOth ACM International Conference on Mobile Compu- ring and Networking ( MOBICOM), Jan. 2004. 被引量:1
  • 9Saad M M, Bleakley C, Ballal T, et al. High-accuracy Reference-free Ultrasonic Location Estimation [ J ]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(6) : 1561-1570. 被引量:1
  • 10Philipp B. Redpin-adaptive zero-configuration indoor lo- calization through user collaboration [ J ]. MELT'08 Pro- ceedings of the First ACM International Workshop on Mo- bile Entity Localization and Tracking in GPS-less Envi- ronments, 2008: 55-60. 被引量:1

共引文献124

同被引文献37

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部