摘要
During embryo development, the vascular precursors and ground tissue stem cells divide to renew them-selves and produce the vascular tissue, endodermal cells, and cortical cells. However, the molecular mech-anisms regulating division of these stem cells have remained largely elusive. In this study, we show that loss of function of SOMATIC EMBRYOGENESIS RECEPTOR-UKE KINASE (SERK) genes results in aberrant em-bryo development. Fewer cortical, endodermal, and vascular cells are generated in the embryos of serk1 serk2bak1 triple mutants. WUSCHEL-RELATED HOMBOBOX5 (WOXS) is ectopically expressed in vascular cells of serkl serk2 bak1 embryos. The first transverse division of vascular precursors in mid-globular em-bryos and second asymmetric division of ground tissue stem cells in early-heart embryos are abnormally altered to a longitudinal division. The embryo defects can be partially rescued by constitutively activated mitogen-activated protein kinase (MAPK) kinase kinase YODA (YDA) and MAPK kinase MKK5. Taken together, our results reveal that SERK-mediated signals regulate division patterns of vascular precursors and ground tissue stem cells, likely via the YDA-MKK4/5 cascade, during embryo development.
基金
National Natural Science Foundation of China (31770312, 31530005, 31471402, 31720103902, 31270229, 31070283)
the Ministry of Education (113058A. NCET-12-0249)
the 111 Project (B16022)
the Fundamental Research Funds for the Central Universities (lzujbky-2018-kb05)
the Gansu Provincial Science & Technology Department (17ZD2NA015-06, 17ZD2NA016-5).